Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: F. Otto x
  • Refine by Access: All Content x
Clear All Modify Search
L. F. HUBERT and OTTO BERG

Abstract

Photographs taken on October 5, 1954, from an Aerobee racket, fired from White Sands, N. Mex., arc presented which show the cloud patterns of a tropical storm near Del Rio, Tex., and a secondary vortex over southwestern New Mexico. The method and purpose of obtaining these photographs are discussed.

Detailed surface-pressure and 300-mb. isotach and streamline analyses reveal features of the circulation missed by tile usual contour analysis. This illustrates some possible shortcomings of our routine analysis and the utility of rocket photo-reconnaissance.

Full access
A. Hannart, C. Vera, B. Cerne, and F. E. L. Otto
Full access
T. R. Marthews, F. E. L. Otto, D. Mitchell, S. J. Dadson, and R. G. Jones
Full access
K. Bergaoui, D. Mitchell, F. Otto, M. Allen, R. Zaaboul, and R. McDonnell
Full access
A. Hannart, J. Pearl, F. E. L. Otto, P. Naveau, and M. Ghil

Abstract

The emergence of clear semantics for causal claims and of a sound logic for causal reasoning is relatively recent, with the consolidation over the past decades of a coherent theoretical corpus of definitions, concepts, and methods of general applicability that is anchored into counterfactuals. The latter corpus has proved to be of high practical interest in numerous applied fields (e.g., epidemiology, economics, and social science). In spite of their rather consensual nature and proven efficacy, these definitions and methods are to a large extent not used in detection and attribution (D&A). This article gives a brief overview of the main concepts underpinning the causal theory and proposes some methodological extensions for the causal attribution of weather and climate-related events that are rooted into the latter. Implications for the formulation of causal claims and their uncertainty are finally discussed.

Full access
Sarah f. Kew, Sjoukje Y. Philip, Geert Jan van Oldenborgh, Gerard van der Schrier, Friederike E. L. Otto, and Robert Vautard
Open access
Sjoukje Philip, Sarah F. Kew, Geert Jan van Oldenborgh, Emma Aalbers, Robert Vautard, Friederike Otto, Karsten Haustein, Florence Habets, and Roop Singh

Abstract

The extreme precipitation that resulted in historic flooding in central-northern France began 26 May 2016 and was linked to a large cutoff low. The floods caused some casualties and over a billion euros in damage. To objectively answer the question of whether anthropogenic climate change played a role, a near-real-time “rapid” attribution analysis was performed, using well-established event attribution methods, best available observational data, and as many climate simulations as possible within that time frame. This study confirms the results of the rapid attribution study. We estimate how anthropogenic climate change has affected the likelihood of exceedance of the observed amount of 3-day precipitation in April–June for the Seine and Loire basins. We find that the observed precipitation in the Seine basin was very rare, with a return period of hundreds of years. It was less rare on the Loire—roughly 1 in 20 years. We evaluated five climate model ensembles for 3-day basin-averaged precipitation extremes in April–June. The four ensembles that simulated the statistics agree well. Combining the results reduces the uncertainty and indicates that the probability of such rainfall has increased over the last century by about a factor of 2.2 (>1.4) on the Seine and 1.9 (>1.5) on the Loire due to anthropogenic emissions. These numbers are virtually the same as those in the near-real-time attribution study by van Oldenborgh et al. Together with the evaluation of the attribution of Storm Desmond by Otto et al., this shows that, for these types of events, near-real-time attribution studies are now possible.

Open access
Samantha Stevenson, Jonathan T. Overpeck, John Fasullo, Sloan Coats, Luke Parsons, Bette Otto-Bliesner, Toby Ault, Garrison Loope, and Julia Cole

Abstract

Multidecadal hydroclimate variability has been expressed as “megadroughts” (dry periods more severe and prolonged than observed over the twentieth century) and corresponding “megapluvial” wet periods in many regions around the world. The risk of such events is strongly affected by modes of coupled atmosphere–ocean variability and by external impacts on climate. Accurately assessing the mechanisms for these interactions is difficult, since it requires large ensembles of millennial simulations as well as long proxy time series. Here, the Community Earth System Model (CESM) Last Millennium Ensemble is used to examine statistical associations among megaevents, coupled climate modes, and forcing from major volcanic eruptions. El Niño–Southern Oscillation (ENSO) strongly affects hydroclimate extremes: larger ENSO amplitude reduces megadrought risk and persistence in the southwestern United States, the Sahel, monsoon Asia, and Australia, with corresponding increases in Mexico and the Amazon. The Atlantic multidecadal oscillation (AMO) also alters megadrought risk, primarily in the Caribbean and the Amazon. Volcanic influences are felt primarily through enhancing AMO amplitude, as well as alterations in the structure of both ENSO and AMO teleconnections, which lead to differing manifestations of megadrought. These results indicate that characterizing hydroclimate variability requires an improved understanding of both volcanic climate impacts and variations in ENSO/AMO teleconnections.

Full access
Sjoukje Philip, Sarah F. Kew, Geert Jan van Oldenborgh, Friederike Otto, Sarah O’Keefe, Karsten Haustein, Andrew King, Abiy Zegeye, Zewdu Eshetu, Kinfe Hailemariam, Roop Singh, Eddie Jjemba, Chris Funk, and Heidi Cullen

Abstract

In northern and central Ethiopia, 2015 was a very dry year. Rainfall was only from one-half to three-quarters of the usual amount, with both the “belg” (February–May) and “kiremt” rains (June–September) affected. The timing of the rains that did fall was also erratic. Many crops failed, causing food shortages for many millions of people. The role of climate change in the probability of a drought like this is investigated, focusing on the large-scale precipitation deficit in February–September 2015 in northern and central Ethiopia. Using a gridded analysis that combines station data with satellite observations, it is estimated that the return period of this drought was more than 60 years (lower bound 95% confidence interval), with a most likely value of several hundred years. No trend is detected in the observations, but the large natural variability and short time series means large trends could go undetected in the observations. Two out of three large climate model ensembles that simulated rainfall reasonably well show no trend while the third shows an increased probability of drought. Taking the model spread into account the drought still cannot be clearly attributed to anthropogenic climate change, with the 95% confidence interval ranging from a probability decrease between preindustrial and today of a factor of 0.3 and an increase of a factor of 5 for a drought like this one or worse. A soil moisture dataset also shows a nonsignificant drying trend. According to ENSO correlations in the observations, the strong 2015 El Niño did increase the severity of the drought.

Open access
Jarkko T. Koskinen, Jani Poutiainen, David M. Schultz, Sylvain Joffre, Jarmo Koistinen, Elena Saltikoff, Erik Gregow, Heikki Turtiainen, Walter F. Dabberdt, Juhani Damski, Noora Eresmaa, Sabine Göke, Otto Hyvärinen, Leena Järvi, Ari Karppinen, Janne Kotro, Timo Kuitunen, Jaakko Kukkonen, Markku Kulmala, Dmitri Moisseev, Pertti Nurmi, Heikki Pohjola, Pirkko Pylkkö, Timo Vesala, and Yrjö Viisanen

Abstract

The Finnish Meteorological Institute and Vaisala have established a mesoscale weather observational network in southern Finland. The Helsinki Testbed is an open research and quasi-operational program designed to provide new information on observing systems and strategies, mesoscale weather phenomena, urban and regional modeling, and end-user applications in a high-latitude (~60°N) coastal environment. The Helsinki Testbed and related programs feature several components: observing system design and implementation, small-scale data assimilation, nowcasting and short-range numerical weather prediction, public service, and commercial development of applications. Specifically, the observing instrumentation focuses on meteorological observations of meso-gamma-scale phenomena that are often too small to be detected adequately by traditional observing networks. In particular, more than 40 telecommunication masts (40 that are 120 m high and one that is 300 m high) are instrumented at multiple heights. Other instrumentation includes one operational radio sounding (and occasional supplemental ones), ceilometers, aerosol-particle and trace-gas instrumentation on an urban flux-measurement tower, a wind profiler, and four Doppler weather radars, three of which have dual-polarimetric capability. The Helsinki Testbed supports the development and testing of new observational instruments, systems, and methods during coordinated field experiments, such as the NASA Global Precipitation Measurement (GPM). Currently, the Helsinki Testbed Web site typically receives more than 450,000 weekly visits, and more than 600 users have registered to use historical data records. This article discusses the three different phases of development and associated activities of the Helsinki Testbed from network development and observational campaigns, development of the local analysis and prediction system, and testing of applications for commercial services. Finally, the Helsinki Testbed is evaluated based on previously published criteria, indicating both successes and shortcomings of this approach.

Full access