Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: F. T. Jacobs x
  • All content x
Clear All Modify Search
C. P. Chang, F. T. Jacobs, and B. B. Edwards

Abstract

A diagnostic model is proposed to use digitized satellite cloud brightness data to estimate objectively the large-scale flow patterns over data-void tropical regions. The model utilizes a linear barotropic vorticity equation with two primary assumptions: 1) that the area-averaged cloud brightness is positively correlated with large-scale divergence in the tropical upper troposphere; and 2) that the large-scale tropical flow is quasi-barotropic and quasi-non-divergent. It is designed to be used at any upper tropospheric level where divergence is important in determining the vorticity field. Three types of information are required: 1) boundary conditions determined from surrounding wind reports, 2) a mean zonal flow determined from climatology, and 3) an equivalent divergence forcing function constructed empirically from the brightness data.

The model is tested daily over a western North Pacific region for July-August 1971. Results for an 8-day representative period are presented and discussed. In general for 25% of the days tested, the model produces a flow field which accurately resembles the major features of the streamfunction field analyzed by the National Meteorological Center. In another 30% of the days it provides some valuable information about the flow patterns which would be difficult to obtain from boundary information alone. Experiments are also performed for two days in which the brightness data are enhanced by time-interpolated satellite infrared data. The resultant flow fields bear better resemblance to the NMC analysis. It is thus suggested that improved results may be expected when infrared and other types of advanced satellite data are available.

Full access
Matthew T. Morris, Jacob R. Carley, Edward Colón, Annette Gibbs, Manuel S. F. V. De Pondeca, and Steven Levine

Abstract

Missing observations at airports can cause delays in commercial and general aviation in the United States owing to Federal Aviation Administration (FAA) safety regulations. The Environmental Modeling Center (EMC) has provided interpolated temperature data from the National Oceanic and Atmospheric Administration’s Real-Time Mesoscale Analysis (RTMA) at airport locations throughout the United States since 2015, with these data substituting for missing temperature observations and mitigating impacts on air travel. A quality assessment of the RTMA is performed to determine if the RTMA could be used in a similar fashion for other weather observations, such as 10-m wind, ceiling, and visibility. Retrospective, data-denial experiments are used to perform the quality assessment by withholding observations from FAA-specified airports. Outliers seen in the RTMA ceiling and visibility analyses during events meeting or exceeding instrument flight rules suggest the RTMA should not be substituted for missing ceiling and visibility observations at this time. The RTMA is a suitable replacement for missing temperature observations for a subset of airports throughout most of the CONUS and Alaska, but not at all stations. Likewise, the RTMA is a suitable substitute for missing surface pressure observations at a subset of airports, with notable exceptions in regions of complex terrain. The RTMA may also be a suitable substitute for missing wind speed observations, provided the wind speed is ≤15 kt (1 kt ≈ 0.51 m s−1). Overall, these results suggest the potential for RTMA to substitute for additional missing observations while highlighting priority areas of future work for improving the RTMA.

Free access
Tomáš Púčik, Pieter Groenemeijer, Anja T. Rädler, Lars Tijssen, Grigory Nikulin, Andreas F. Prein, Erik van Meijgaard, Rowan Fealy, Daniela Jacob, and Claas Teichmann

Abstract

The occurrence of environmental conditions favorable for severe convective storms was assessed in an ensemble of 14 regional climate models covering Europe and the Mediterranean with a horizontal grid spacing of 0.44°. These conditions included the collocated presence of latent instability and strong deep-layer (surface to 500 hPa) wind shear, which is conducive to the severe and well-organized convective storms. The occurrence of precipitation in the models was used as a proxy for convective initiation. Two climate scenarios (RCP4.5 and RCP8.5) were investigated by comparing two future periods (2021–50 and 2071–2100) to a historical period (1971–2000) for each of these scenarios. The ensemble simulates a robust increase (change larger than twice the ensemble sample standard deviation) in the frequency of occurrence of unstable environments (lifted index ≤ −2) across central and south-central Europe in the RCP8.5 scenario in the late twenty-first century. This increase coincides with the increase in lower-tropospheric moisture. Smaller, less robust changes were found until midcentury in the RCP8.5 scenario and in the RCP4.5 scenario. Changes in the frequency of situations with strong (≥15 m s−1) deep-layer shear were found to be small and not robust, except across far northern Europe, where a decrease in shear is projected. By the end of the century, the simultaneous occurrence of latent instability, strong deep-layer shear, and model precipitation is simulated to increase by up to 100% across central and eastern Europe in the RCP8.5 and by 30%–50% in the RCP4.5 scenario. Until midcentury, increases in the 10%–25% range are forecast for most regions. A large intermodel variability is present in the ensemble and is primarily due to the uncertainties in the frequency of the occurrence of unstable environments.

Full access
Gerhard Theurich, C. DeLuca, T. Campbell, F. Liu, K. Saint, M. Vertenstein, J. Chen, R. Oehmke, J. Doyle, T. Whitcomb, A. Wallcraft, M. Iredell, T. Black, A. M. Da Silva, T. Clune, R. Ferraro, P. Li, M. Kelley, I. Aleinov, V. Balaji, N. Zadeh, R. Jacob, B. Kirtman, F. Giraldo, D. McCarren, S. Sandgathe, S. Peckham, and R. Dunlap IV

Abstract

The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open-source terms or to credentialed users.

The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the United States. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multiagency development of coupled modeling systems; controlled experimentation and testing; and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NAVGEM), the Hybrid Coordinate Ocean Model (HYCOM), and the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model.

Full access
Earle R. Williams, David J. Smalley, Michael F. Donovan, Robert G. Hallowell, Kenta T. Hood, Betty J. Bennett, Raquel Evaristo, Adam Stepanek, Teresa Bals-Elsholz, Jacob Cobb, Jaclyn Ritzman, Alexei Korolev, and Mengistu Wolde

Abstract

The organized behavior of differential radar reflectivity (ZDR) is documented in the cold regions of a wide variety of stratiform precipitation types occurring in both winter and summer. The radar targets and attendant cloud microphysical conditions are interpreted within the context of measurements of ice crystal types in laboratory diffusion chambers in which humidity and temperature are both stringently controlled. The overriding operational interest here is in the identification of regions prone to icing hazards with long horizontal paths. Two predominant regimes are identified: category A, which is typified by moderate reflectivity (from 10 to 30 dBZ) and modest +ZDR values (from 0 to +3 dB) in which both supercooled water and dendritic ice crystals (and oriented aggregates of ice crystals) are present at a mean temperature of −13°C, and category B, which is typified by small reflectivity (from −10 to +10 dBZ) and the largest +ZDR values (from +3 to +7 dB), in which supercooled water is dilute or absent and both flat-plate and dendritic crystals are likely. The predominant positive values for ZDR in many case studies suggest that the role of an electric field on ice particle orientation is small in comparison with gravity. The absence of robust +ZDR signatures in the trailing stratiform regions of vigorous summer squall lines may be due both to the infusion of noncrystalline ice particles (i.e., graupel and rimed aggregates) from the leading deep convection and to the effects of the stronger electric fields expected in these situations. These polarimetric measurements and their interpretations underscore the need for the accurate calibration of ZDR.

Full access
E. Raschke, J. Meywerk, K. Warrach, U. Andrea, S. Bergström, F. Beyrich, F. Bosveld, K. Bumke, C. Fortelius, L. P. Graham, S.-E. Gryning, S. Halldin, L. Hasse, M. Heikinheimo, H.-J. Isemer, D. Jacob, I. Jauja, K.-G. Karlsson, S. Keevallik, J. Koistinen, A. van Lammeren, U. Lass, J. Launianen, A. Lehmann, B. Liljebladh, M. Lobmeyr, W. Matthäus, T. Mengelkamp, D. B. Michelson, J. Napiórkowski, A. Omstedt, J. Piechura, B. Rockel, F. Rubel, E. Ruprecht, A.-S. Smedman, and A. Stigebrandt

The Baltic Sea Experiment (BALTEX) is one of the five continental-scale experiments of the Global Energy and Water Cycle Experiment (GEWEX). More than 50 research groups from 14 European countries are participating in this project to measure and model the energy and water cycle over the large drainage basin of the Baltic Sea in northern Europe. BALTEX aims to provide a better understanding of the processes of the climate system and to improve and to validate the water cycle in regional numerical models for weather forecasting and climate studies. A major effort is undertaken to couple interactively the atmosphere with the vegetated continental surfaces and the Baltic Sea including its sea ice. The intensive observational and modeling phase BRIDGE, which is a contribution to the Coordinated Enhanced Observing Period of GEWEX, will provide enhanced datasets for the period October 1999–February 2002 to validate numerical models and satellite products. Major achievements have been obtained in an improved understanding of related exchange processes. For the first time an interactive atmosphere–ocean–land surface model for the Baltic Sea was tested. This paper reports on major activities and some results.

Full access
J. Fishman, L. T. Iraci, J. Al-Saadi, K. Chance, F. Chavez, M. Chin, P. Coble, C. Davis, P. M. DiGiacomo, D. Edwards, A. Eldering, J. Goes, J. Herman, C. Hu, D. J. Jacob, C. Jordan, S. R. Kawa, R. Key, X. Liu, S. Lohrenz, A. Mannino, V. Natraj, D. Neil, J. Neu, M. Newchurch, K. Pickering, J. Salisbury, H. Sosik, A. Subramaniam, M. Tzortziou, J. Wang, and M. Wang

The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission was recommended by the National Research Council's (NRC's) Earth Science Decadal Survey to measure tropospheric trace gases and aerosols and coastal ocean phytoplankton, water quality, and biogeochemistry from geostationary orbit, providing continuous observations within the field of view. To fulfill the mandate and address the challenge put forth by the NRC, two GEO-CAPE Science Working Groups (SWGs), representing the atmospheric composition and ocean color disciplines, have developed realistic science objectives using input drawn from several community workshops. The GEO-CAPE mission will take advantage of this revolutionary advance in temporal frequency for both of these disciplines. Multiple observations per day are required to explore the physical, chemical, and dynamical processes that determine tropospheric composition and air quality over spatial scales ranging from urban to continental, and over temporal scales ranging from diurnal to seasonal. Likewise, high-frequency satellite observations are critical to studying and quantifying biological, chemical, and physical processes within the coastal ocean. These observations are to be achieved from a vantage point near 95°–100°W, providing a complete view of North America as well as the adjacent oceans. The SWGs have also endorsed the concept of phased implementation using commercial satellites to reduce mission risk and cost. GEO-CAPE will join the global constellation of geostationary atmospheric chemistry and coastal ocean color sensors planned to be in orbit in the 2020 time frame.

Full access
Nick A. Rayner, Renate Auchmann, Janette Bessembinder, Stefan Brönnimann, Yuri Brugnara, Francesco Capponi, Laura Carrea, Emma M. A. Dodd, Darren Ghent, Elizabeth Good, Jacob L. Høyer, John J. Kennedy, Elizabeth C. Kent, Rachel E. Killick, Paul van der Linden, Finn Lindgren, Kristine S. Madsen, Christopher J. Merchant, Joel R. Mitchelson, Colin P. Morice, Pia Nielsen-Englyst, Patricio F. Ortiz, John J. Remedios, Gerard van der Schrier, Antonello A. Squintu, Ag Stephens, Peter W. Thorne, Rasmus T. Tonboe, Tim Trent, Karen L. Veal, Alison M. Waterfall, Kate Winfield, Jonathan Winn, and R. Iestyn Woolway

Abstract

Day-to-day variations in surface air temperature affect society in many ways, but daily surface air temperature measurements are not available everywhere. Therefore, a global daily picture cannot be achieved with measurements made in situ alone and needs to incorporate estimates from satellite retrievals. This article presents the science developed in the EU Horizon 2020–funded EUSTACE project (2015–19, www.eustaceproject.org) to produce global and European multidecadal ensembles of daily analyses of surface air temperature complementary to those from dynamical reanalyses, integrating different ground-based and satellite-borne data types. Relationships between surface air temperature measurements and satellite-based estimates of surface skin temperature over all surfaces of Earth (land, ocean, ice, and lakes) are quantified. Information contained in the satellite retrievals then helps to estimate air temperature and create global fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place; this needs efficient statistical analysis methods to cope with the considerable data volumes. Daily fields are presented as ensembles to enable propagation of uncertainties through applications. Estimated temperatures and their uncertainties are evaluated against independent measurements and other surface temperature datasets. Achievements in the EUSTACE project have also included fundamental preparatory work useful to others, for example, gathering user requirements, identifying inhomogeneities in daily surface air temperature measurement series from weather stations, carefully quantifying uncertainties in satellite skin and air temperature estimates, exploring the interaction between air temperature and lakes, developing statistical models relevant to non-Gaussian variables, and methods for efficient computation.

Full access
C. P. Weaver, X.-Z. Liang, J. Zhu, P. J. Adams, P. Amar, J. Avise, M. Caughey, J. Chen, R. C. Cohen, E. Cooter, J. P. Dawson, R. Gilliam, A. Gilliland, A. H. Goldstein, A. Grambsch, D. Grano, A. Guenther, W. I. Gustafson, R. A. Harley, S. He, B. Hemming, C. Hogrefe, H.-C. Huang, S. W. Hunt, D.J. Jacob, P. L. Kinney, K. Kunkel, J.-F. Lamarque, B. Lamb, N. K. Larkin, L. R. Leung, K.-J. Liao, J.-T. Lin, B. H. Lynn, K. Manomaiphiboon, C. Mass, D. McKenzie, L. J. Mickley, S. M. O'neill, C. Nolte, S. N. Pandis, P. N. Racherla, C. Rosenzweig, A. G. Russell, E. Salathé, A. L. Steiner, E. Tagaris, Z. Tao, S. Tonse, C. Wiedinmyer, A. Williams, D. A. Winner, J.-H. Woo, S. WU, and D. J. Wuebbles

This paper provides a synthesis of results that have emerged from recent modeling studies of the potential sensitivity of U.S. regional ozone (O3) concentrations to global climate change (ca. 2050). This research has been carried out under the auspices of an ongoing U.S. Environmental Protection Agency (EPA) assessment effort to increase scientific understanding of the multiple complex interactions among climate, emissions, atmospheric chemistry, and air quality. The ultimate goal is to enhance the ability of air quality managers to consider global change in their decisions through improved characterization of the potential effects of global change on air quality, including O3 The results discussed here are interim, representing the first phase of the EPA assessment. The aim in this first phase was to consider the effects of climate change alone on air quality, without accompanying changes in anthropogenic emissions of precursor pollutants. Across all of the modeling experiments carried out by the different groups, simulated global climate change causes increases of a few to several parts per billion (ppb) in summertime mean maximum daily 8-h average O3 concentrations over substantial regions of the country. The different modeling experiments in general do not, however, simulate the same regional patterns of change. These differences seem to result largely from variations in the simulated patterns of changes in key meteorological drivers, such as temperature and surface insolation. How isoprene nitrate chemistry is represented in the different modeling systems is an additional critical factor in the simulated O3 response to climate change.

Full access