Search Results
You are looking at 1 - 5 of 5 items for
- Author or Editor: Fabienne Gaillard x
- Refine by Access: All Content x
Abstract
The results of the experiment conducted in the northwest Atlantic in 1981 have demonstrated the possibilities of acoustic tomography. The first maps, based only on purely refracted rays, showed the evolution of a cold eddy, confirmed by direct measurement of temperature and salinity. A more complete use of the 1981 dataset, with incorporation of surface-reflected rays, is proposed here. The addition of new data reduces the statistical error on the estimation of the sound speed field. Resolution at levels already well estimated in the earlier computations is improved, and individual maps exhibit a better continuity. Information is now available about the average properties of the upper layers of the ocean, which could not be monitored with purely refracted rays.
Abstract
The results of the experiment conducted in the northwest Atlantic in 1981 have demonstrated the possibilities of acoustic tomography. The first maps, based only on purely refracted rays, showed the evolution of a cold eddy, confirmed by direct measurement of temperature and salinity. A more complete use of the 1981 dataset, with incorporation of surface-reflected rays, is proposed here. The addition of new data reduces the statistical error on the estimation of the sound speed field. Resolution at levels already well estimated in the earlier computations is improved, and individual maps exhibit a better continuity. Information is now available about the average properties of the upper layers of the ocean, which could not be monitored with purely refracted rays.
Abstract
The mixed layer heat and salt budget in the southeastern subtropical Pacific are estimated using 7 years (2004–10) of Argo-profiling float data, surface fluxes, precipitation, surface velocity data, and wind observations and reanalysis. In this region, the mixed layer heat budget is characterized by a strong annual cycle mainly modulated by the shortwave radiation annual cycle. During the austral fall and winter, the shortwave radiation input minimum is overwhelmed by the heat loss mainly because of the latent heat flux. The mixed layer salt budget also presents a strong annual cycle with a minimum of salt content during the late austral winter. In contrast with the heat budget, the salt budget is mainly driven by the unresolved terms computed as the residual of the budget. Among these missing terms, the most likely candidate is the vertical turbulent mixing as a result of convection caused by the heat surface buoyancy loss and the destabilizing vertical gradient of salinity at the base of the mixed layer. This downward flux of salt at the base of the mixed layer could explain the annual spiciness injection and interannual spiciness variability in the permanent thermocline in the southeastern Pacific.
Abstract
The mixed layer heat and salt budget in the southeastern subtropical Pacific are estimated using 7 years (2004–10) of Argo-profiling float data, surface fluxes, precipitation, surface velocity data, and wind observations and reanalysis. In this region, the mixed layer heat budget is characterized by a strong annual cycle mainly modulated by the shortwave radiation annual cycle. During the austral fall and winter, the shortwave radiation input minimum is overwhelmed by the heat loss mainly because of the latent heat flux. The mixed layer salt budget also presents a strong annual cycle with a minimum of salt content during the late austral winter. In contrast with the heat budget, the salt budget is mainly driven by the unresolved terms computed as the residual of the budget. Among these missing terms, the most likely candidate is the vertical turbulent mixing as a result of convection caused by the heat surface buoyancy loss and the destabilizing vertical gradient of salinity at the base of the mixed layer. This downward flux of salt at the base of the mixed layer could explain the annual spiciness injection and interannual spiciness variability in the permanent thermocline in the southeastern Pacific.
Abstract
In order to access the statistical properties of the mesoscale dynamics in the Western Mediterranean, and its associated transport and heat fluxes during the postconvection period, the authors have applied data combination methods for analyzing a wide range of in situ measurements collected during the Thetis 1 and Convhiv experiments. CTD and XBT profiles were merged with times series at a fixed or moving point and also with integral time series obtained from acoustic tomography data. Estimates of temperature and currents within a box of approximately one degree square, over a time period of 35 days during the postconvection period, were produced. During this winter, convection has been only partial, rarely penetrating deeper than 1200 m. The analysis concentrates on the upper 1000 m, where most changes occur. Geostrophy is used as a dynamical constraint relating the parameters. The time evolution is controlled by a Kalman filter using simple persistence.
The contribution of the different datasets to the estimation indicates their complementarity in the time and space dimensions. Hydrography and Eulerian measurements provide a major contribution to the estimation of the baroclinic modes. Tomography data complement the estimate at all horizontal scales. Float data bring some information on the barotropic mode but the major contribution on this mode comes from the reciprocal tomography data, particularly at the largest scales. The period analyzed mostly covers the postconvection. Estimation of the kinetic energy indicates that the barotropic contribution represents 85% of the total energy. Horizontal advection transfers heat toward the central area at a mean rate of 50 W m−2 compensating for the heat losses through the surface. The mesoscale flow field observed is characterized by strongly barotropic coherent vortices with a size O(30–40 km). These barotropic eddies are present during all phases of convection.
Abstract
In order to access the statistical properties of the mesoscale dynamics in the Western Mediterranean, and its associated transport and heat fluxes during the postconvection period, the authors have applied data combination methods for analyzing a wide range of in situ measurements collected during the Thetis 1 and Convhiv experiments. CTD and XBT profiles were merged with times series at a fixed or moving point and also with integral time series obtained from acoustic tomography data. Estimates of temperature and currents within a box of approximately one degree square, over a time period of 35 days during the postconvection period, were produced. During this winter, convection has been only partial, rarely penetrating deeper than 1200 m. The analysis concentrates on the upper 1000 m, where most changes occur. Geostrophy is used as a dynamical constraint relating the parameters. The time evolution is controlled by a Kalman filter using simple persistence.
The contribution of the different datasets to the estimation indicates their complementarity in the time and space dimensions. Hydrography and Eulerian measurements provide a major contribution to the estimation of the baroclinic modes. Tomography data complement the estimate at all horizontal scales. Float data bring some information on the barotropic mode but the major contribution on this mode comes from the reciprocal tomography data, particularly at the largest scales. The period analyzed mostly covers the postconvection. Estimation of the kinetic energy indicates that the barotropic contribution represents 85% of the total energy. Horizontal advection transfers heat toward the central area at a mean rate of 50 W m−2 compensating for the heat losses through the surface. The mesoscale flow field observed is characterized by strongly barotropic coherent vortices with a size O(30–40 km). These barotropic eddies are present during all phases of convection.
Abstract
The In Situ Analysis System (ISAS) was developed to produce gridded fields of temperature and salinity that preserve as much as possible the time and space sampling capabilities of the Argo network of profiling floats. Since the first global reanalysis performed in 2009, the system has evolved, and a careful delayed-mode processing of the 2002–12 dataset has been carried out using version 6 of ISAS and updating the statistics to produce the ISAS13 analysis. This last version is now implemented as the operational analysis tool at the Coriolis data center. The robustness of the results with respect to the system evolution is explored through global quantities of climatological interest: the ocean heat content and the steric height. Estimates of errors consistent with the methodology are computed. This study shows that building reliable statistics on the fields is fundamental to improve the monthly estimates and to determine the absolute error bars. The new mean fields and variances deduced from the ISAS13 reanalysis and dataset show significant changes relative to the previous ISAS estimates, in particular in the Southern Ocean, justifying the iterative procedure. During the decade covered by Argo, the intermediate waters appear warmer and saltier in the North Atlantic and fresher in the Southern Ocean than in World Ocean Atlas 2005 long-term mean. At interannual scale, the impact of ENSO on the ocean heat content and steric height is observed during the 2006/07 and 2009/10 events captured by the network.
Abstract
The In Situ Analysis System (ISAS) was developed to produce gridded fields of temperature and salinity that preserve as much as possible the time and space sampling capabilities of the Argo network of profiling floats. Since the first global reanalysis performed in 2009, the system has evolved, and a careful delayed-mode processing of the 2002–12 dataset has been carried out using version 6 of ISAS and updating the statistics to produce the ISAS13 analysis. This last version is now implemented as the operational analysis tool at the Coriolis data center. The robustness of the results with respect to the system evolution is explored through global quantities of climatological interest: the ocean heat content and the steric height. Estimates of errors consistent with the methodology are computed. This study shows that building reliable statistics on the fields is fundamental to improve the monthly estimates and to determine the absolute error bars. The new mean fields and variances deduced from the ISAS13 reanalysis and dataset show significant changes relative to the previous ISAS estimates, in particular in the Southern Ocean, justifying the iterative procedure. During the decade covered by Argo, the intermediate waters appear warmer and saltier in the North Atlantic and fresher in the Southern Ocean than in World Ocean Atlas 2005 long-term mean. At interannual scale, the impact of ENSO on the ocean heat content and steric height is observed during the 2006/07 and 2009/10 events captured by the network.
Abstract
Argo floats have significantly improved the observation of the global ocean interior, but as the size of the database increases, so does the need for efficient tools to perform reliable quality control. It is shown here how the classical method of optimal analysis can be used to validate very large datasets before operational or scientific use. The analysis system employed is the one implemented at the Coriolis data center to produce the weekly fields of temperature and salinity, and the key data are the analysis residuals. The impacts of the various sensor errors are evaluated and twin experiments are performed to measure the system capacity in identifying these errors. It appears that for a typical data distribution, the analysis residuals extract 2/3 of the sensor error after a single analysis. The method has been applied on the full Argo Atlantic real-time dataset for the 2000–04 period (482 floats) and 15% of the floats were detected as having salinity drifts or offset. A second test was performed on the delayed mode dataset (120 floats) to check the overall consistency, and except for a few isolated anomalous profiles, the corrected datasets were found to be globally good. The last experiment performed on the Coriolis real-time products takes into account the recently discovered problem in the pressure labeling. For this experiment, a sample of 36 floats, mixing well-behaved and anomalous instruments of the 2003–06 period, was considered and the simple test designed to detect the most common systematic anomalies successfully identified the deficient floats.
Abstract
Argo floats have significantly improved the observation of the global ocean interior, but as the size of the database increases, so does the need for efficient tools to perform reliable quality control. It is shown here how the classical method of optimal analysis can be used to validate very large datasets before operational or scientific use. The analysis system employed is the one implemented at the Coriolis data center to produce the weekly fields of temperature and salinity, and the key data are the analysis residuals. The impacts of the various sensor errors are evaluated and twin experiments are performed to measure the system capacity in identifying these errors. It appears that for a typical data distribution, the analysis residuals extract 2/3 of the sensor error after a single analysis. The method has been applied on the full Argo Atlantic real-time dataset for the 2000–04 period (482 floats) and 15% of the floats were detected as having salinity drifts or offset. A second test was performed on the delayed mode dataset (120 floats) to check the overall consistency, and except for a few isolated anomalous profiles, the corrected datasets were found to be globally good. The last experiment performed on the Coriolis real-time products takes into account the recently discovered problem in the pressure labeling. For this experiment, a sample of 36 floats, mixing well-behaved and anomalous instruments of the 2003–06 period, was considered and the simple test designed to detect the most common systematic anomalies successfully identified the deficient floats.