Search Results

You are looking at 1 - 10 of 58 items for

  • Author or Editor: Fan Wang x
  • Refine by Access: All Content x
Clear All Modify Search
Ke Fan and Huijun Wang

Abstract

This paper presents a new approach for forecasting the typhoon frequency of the western North Pacific (WNP). The year-to-year increase or decrease in typhoon frequency is first forecasted to yield a net typhoon frequency prediction. Five key predictors for the year-to-year increment in the number of typhoons in the WNP have been identified, and a forecast model is established using a multilinear regression method based on data taken from 1965 to 2001. Using the forecast model, a hindcast of the typhoon frequency of the WNP during 2002–07 is made. The model exhibited a reasonably close fit for the period 1965–2007, including the larger anomalies in 1997 and 1998. It also accounted for the smaller variability of the typhoon frequency of the WNP during the validation period 2002–07 with an average root-mean-square error (RMSE) of 1.3 (2.85) during 2002–07 (1965–2001). The cross-validation test of the prediction model shows that the new approach and the prediction model demonstrate better prediction skill when compared to the models established based on typhoon frequency rather than the typhoon frequency increment. Thus, this new approach has the potential to improve the operational forecasting skill for typhoon frequency in the WNP.

Full access
Bin Wang and Zhen Fan

In the south Asian region, two of the major precipitation maxima associated with areas of intensive convective activity are located near the Bay of Bengal and in the vicinity of the Philippines. The variations of monthly mean outgoing longwave radiation in the two regions are poorly correlated, particularly in the decade of 1980s. The enhanced convection over the Bay of Bengal and Indian subcontinents is coupled with reinforced monsoon circulation west of 80°E over India, the western Indian Ocean, and the tropical northern Africa. In contrast, the enhanced convection in the vicinity of the Philippines corresponds to intensified monsoon circulation primarily east of 80°E over southeast Asia including the Indochina peninsula, South China Sea, Philippine Sea, and the Maritime Continent. To better reflect regional monsoon characteristics, two convection indices (or associated circulation indices that are dynamically coherent with the convection indices) are suggested to measure the variability of the Indian summer monsoon (ISM) and the southeast Asian summer monsoon, respectively.

The change in the Bay of Bengal convection (the ISM) has planetary-scale implications, whereas the change in Philippine convection has primarily a regional impact including a linkage with the east Asia subtropical monsoon. The equatorial western Pacific winds exhibit a considerably higher correlation with the ISM convection than with the Philippine convection. During the summers when a major Pacific warm episode occurs (e.g., 1982–83, 1986–87, 1991–92, and 1997), the convection and circulation indices describing the ISM often diverge considerably, causing inconsistency among various normally coherent monsoon indices. This poses a primary difficulty for using a single monsoon index to characterize the interannual variability of a regional monsoon. The cause of the breakdown of the coherence between various convection and circulation indices during ENSO warm phase needs to be understood.

Full access
Huijun Wang and Ke Fan

Abstract

A new scheme is developed to improve the seasonal prediction of summer precipitation in the East Asian and western Pacific region. The scheme is applied to the Development of a European Multimodel Ensemble System for Seasonal to Interannual Prediction (DEMETER) results. The new scheme is designed to consider both model predictions and observed spatial patterns of historical “analog years.” In this paper, the anomaly pattern correlation coefficient (ACC) between the prediction and the observation, as well as the root-mean-square error, is used to measure the prediction skill. For the prediction of summer precipitation in East Asia and the western Pacific (0°–40°N, 80°–130°E), the prediction skill for the six model ensemble hindcasts for the years of 1979–2001 was increased to 0.22 by using the new scheme from 0.12 for the original scheme. All models were initiated in May and were composed of nine member predictions, and all showed improvement when applying the new scheme. The skill levels of the predictions for the six models increased from 0.08, 0.08, 0.01, 0.14, −0.07, and 0.07 for the original scheme to 0.11, 0.14, 0.10, 0.22, 0.04, and 0.13, respectively, for the new scheme.

Full access
Fan Wang, Yuanlong Li, and Jianing Wang

Abstract

The surface circulation of the tropical Pacific Ocean is characterized by alternating zonal currents, such as the North Equatorial Current (NEC), North Equatorial Countercurrent (NECC), South Equatorial Current (SEC), and South Equatorial Countercurrent (SECC). In situ measurements of subsurface moorings and satellite observations reveal pronounced intraseasonal variability (ISV; 20–90 days) of these zonal currents in the western tropical Pacific Ocean (WTPO). The amplitude of ISV is the largest within the equatorial band exceeding 20 cm s−1 and decreases to ~10 cm s−1 in the NECC band and further to 4–8 cm s−1 in the NEC and SECC. The ISV power generally increases from high frequencies to low frequencies and exhibits a peak at 50–60 days in the NECC, SEC, and SECC. These variations are faithfully reproduced by an ocean general circulation model (OGCM) forced by satellite winds, and parallel model experiments are performed to gain insights into the underlying mechanisms. It is found that large-scale ISV (>500 km) is primarily caused by atmospheric intraseasonal oscillations (ISOs), such as the Madden–Julian oscillation (MJO), through wind stress forcing. These signals are confined within 10°S–8°N, mainly as baroclinic ocean wave responses to ISO winds. For scales shorter than 200 km, ISV is dominated by ocean internal variabilities with mesoscale structures. They arise from the baroclinic and barotropic instabilities associated with the vertical and horizontal shears of the upper-ocean circulation. The ISV exhibits evident seasonal variation, with larger (smaller) amplitude in boreal winter (summer) in the SEC and SECC.

Full access
Yi-Fan Wang and Zhe-Min Tan

Abstract

Secondary eyewall formation (SEF) could be considered as the aggregation of a convective-ring coupling with a tangential wind maximum outside the primary eyewall of a tropical cyclone (TC). The dynamics of SEF are investigated using idealized simulations based on a set of triplet experiments, whose differences are only in the initial outer-core wind speed. The triplet experiments indicate that the unbalanced boundary layer (BL) process driven by outer rainbands (ORBs) is essential for the canonical SEF. The developments of a secondary tangential wind maximum and a secondary convective ring are governed by two different pathways, which are well coupled in the canonical SEF. Compared with inner/suppressed rainbands, the downwind stratiform sectors of ORBs drive significant stronger BL convergence at its radially inward side, which fastens up the SEF region and links the two pathways. In the wind-maximum formation pathway, the positive feedback among the BL convergence, supergradient force, and relative vorticity within the BL dominates the spinup of a secondary tangential wind maximum. In the convective-ring formation pathway, the BL convergence contributes to the ascending motion through the frictional-forced updraft and accelerated outflow associated with the supergradient force above the BL. Driven only by inner rainbands, the simulated vortex develops a fake SEF with only the secondary convective ring since the rainband-driven BL convergence is less enhanced and thus fails to maintain the BL positive feedback in the wind-maximum pathway. Therefore, only ORBs can promote the canonical SEF. It also infers that any environmental/physical conditions favorable for the development of ORBs will ultimately contribute to SEF.

Open access
Xiao-yong Zhuge, Fan Yu, and Ye Wang

Abstract

A new visible (VIS; 0.55–0.9 μm) albedo normalization method, that is, the quasi-Lambertian surface adjustment (QLSA), is developed herein by using the geostationary meteorological satellite data and radiative transfer model. Taking the variation of relative locations between the sun, satellite, and clouds into account, the QLSA effectively reduces the inconsistencies in the VIS image brightness caused by the Lambertian surface approximation to cloud tops (i.e., the reflection characteristic is isotropic). The evaluation, using Chinese and Japanese geostationary satellite data, shows that the QLSA is more effective and accurate than three other albedo normalization methods currently in use. The new algorithm is applicable in regions with solar zenith angle and satellite zenith angle less than 60°, which, in the summertime, approximately corresponds to the time range from 0800 to 1600 local time (LT).

Full access
ZhiQing Xu, Ke Fan, and HuiJun Wang

Abstract

In this study, the authors found that the summer precipitation over China experienced different decadal variation features from north to south after the late 1990s. In northeastern and North China and the lower–middle reaches of the Yangtze River, precipitation decreased after 1999, while precipitation experienced a significant reduction over South and southwestern China and a significant increase over the southern parts of Hetao region and Huaihe River valley after 2003. The authors next analyzed the associated decadal variation of the atmospheric circulation and attempted to identify the mechanisms causing the two decadal variations of precipitation. The wind anomalies for the former exhibit a barotropic meridional dipole pattern, with anticyclonic anomalies over Mongolia to northern China and cyclonic anomalies over the southeastern Chinese coast to the northwestern Pacific. For the latter, there is a southeast–northwest-oriented dipole pattern in the middle and lower troposphere, with cyclonic anomalies over the northern parts of the Tibetan Plateau and anticyclonic anomalies over the lower–middle reaches of the Yangtze River to southern Japan. An anomalous anticyclone dominates the upper troposphere over China south of 40°N. The authors further found that the summer sea surface temperature (SST) warming over the tropical Atlantic played an important role in the decadal variation around 2003 via inducing teleconnections over Eurasia. In contrast, the decadal variation around 1999 may be caused by the phase shift of the Pacific decadal oscillation (PDO), as has previously been indicated.

Full access
Yuanlong Li, Fan Wang, and Fangguo Zhai

Abstract

The Philippine Sea (PS) is a key region connecting North Pacific subtropics to the equator via western boundary currents. Using available measurements from Argo profiling floats, satellite altimeters, and research surveys, the authors investigate the characteristics and mechanism of subsurface spiciness variability (represented by salinity changes between 23.5 and 24.5 σθ) in the PS. During the past decade, low-frequency salinity variability was dominated by interannual signals characterized by out-of-phase changes between the southern and northern PS with peak-to-peak amplitudes exceeding 0.1 psu. These salinity anomalies are mainly generated locally by anomalous cross-front geostrophic advections. In 2003, an anomalous cyclonic circulation developed in the PS, which transported greater (less) than normal high-salinity North Pacific Tropical Water to the northern (southern) PS and produced positive (negative) salinity anomalies there. In 2009, an anomalous anticyclone emerged, which produced negative (positive) salinity anomalies in the northern (southern) PS. These year-to-year variations are closely associated with ENSO cycle. During strong El Niño (La Niña) episodes, positive (negative) wind stress curl anomalies between 8° and 18°N evoke westward-propagating upwelling (downwelling) Rossby waves in the central Pacific and positive (negative) anomalous Ekman pumping in the western Pacific, resulting in the observed current and salinity changes in the PS. Further analysis suggests that these locally generated spiciness anomalies disperse quickly while propagating to the equatorial Pacific in the Mindanao Current (MC). In the meantime, anomalies advected from higher latitudes are nearly diminished upon reaching the PS. The western boundary of the North Pacific seems quite efficient in damping extratropical signals.

Full access
Yanyan Huang, Huijun Wang, and Ke Fan

Abstract

The summer Asian–Pacific oscillation (APO) is a dominant teleconnection pattern over the extratropical Northern Hemisphere that links the large-scale atmospheric circulation anomalies over the Asian–North Pacific Ocean sector. In this study, the direct Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) model outputs from 1960 to 2001, which are limited in predicting the interannual variability of the summer Asian upper-tropospheric temperature and the decadal variations, are applied using the interannual increment approach to improve the predictions of the summer APO. By treating the year-to-year increment as the predictand, the interannual increment scheme is shown to significantly improve the predictive ability for the interannual variability of the summer Asian upper-tropospheric temperature and the decadal variations. The improvements for the interannual and interdecadal summer APO variability predictions in the interannual increment scheme relative to the original scheme are clear and significant. Compared with the DEMETER direct outputs, the statistical model with two predictors of APO and sea surface temperature anomaly over the Atlantic shows a significantly improved ability to predict the interannual variability of the summer rainfall over the middle and lower reaches of the Yangtze River valley (SRYR). This study therefore describes a more efficient approach for predicting the APO and the SRYR.

Full access
Zhifang Xu, Yi Wang, and Guangzhou Fan

Abstract

The relatively smooth terrain embedded in the numerical model creates an elevation difference against the actual terrain, which in turn makes the quality control of 2-m temperature difficult when forecast or analysis fields are utilized in the process. In this paper, a two-stage quality control method is proposed to address the quality control of 2-m temperature, using biweight means and a progressive EOF analysis. The study is made to improve the quality control of the observed 2-m temperature collected by China and its neighboring areas, based on the 6-h T639 analysis from December 2009 to February 2010. Results show that the proposed two-stage quality control method can secure the needed quality control better, compared with a regular EOF quality control process. The new method is, in particular, able to remove the data that are dotted with consecutive errors but showing small fluctuations. Meanwhile, compared with the lapse rate of temperature method, the biweight mean method is able to remove the systematic bias generated by the model. It turns out that such methods make the distributions of observation increments (the difference between observation and background) more Gaussian-like, which ensures the data quality after the quality control.

Full access