Search Results

You are looking at 1 - 10 of 27 items for

  • Author or Editor: Fei Wu x
  • Refine by Access: All Content x
Clear All Modify Search
William J. Randel
and
Fei Wu

Abstract

Temperature profiles in polar latitudes during summer reveal a strong and persistent inversion layer associated with the polar summer tropopause. This inversion layer is characterized by a temperature increase of ∼8 K in the first 2–3 km above the tropopause and is observed throughout summer polar latitudes in both hemispheres. Radiosonde and GPS radio occultation temperature observations are used to document characteristics of the inversion layer, including its seasonal variability and modulation by synoptic meteorological systems (cyclones and anticyclones). Previous analyses have suggested a radiative mechanism for formation and maintenance of tropopause inversions, related to water vapor and ozone near the tropopause. Fixed dynamical heating (FDH) calculations are used herein to investigate this behavior in polar regions, based on observed seasonally varying profiles of water vapor (from satellite measurements) and ozone (from ozonesondes). Water vapor exhibits a strong seasonal cycle throughout the troposphere and lowest stratosphere, with a pronounced summer maximum, which is primarily a result of the seasonally varying tropospheric temperatures. The FDH calculations suggest that enhanced summer water vapor leads to strong radiative cooling in a narrow layer near the tropopause, so that the radiative influence of water vapor provides a primary mechanism for the summer inversion layer.

Full access
William J. Randel
and
Fei Wu

Abstract

Variability in tropical zonal mean temperatures over 10–30 km is analyzed based on high-quality, high-vertical-resolution GPS temperature measurements covering 2001–13. The observations are used to quantify variability spanning time scales of weeks to over a decade, with focus on behavior of the tropopause region and coupling with the upper troposphere and stratosphere. Large variations associated with the seasonal cycle, quasi-biennial oscillation (QBO), and El Niño–Southern Oscillation (ENSO) are isolated and removed, and residual time series are analyzed using principal components and spectrum analysis. The residual temperature exhibits maximum variance in the lower stratosphere, with a vertical structure similar to the seasonal cycle. Residual temperatures exhibit two dominant modes of variability: a “deep stratosphere mode” tied to high-latitude planetary wave forcing and a shallow “near-tropopause mode” linked to dynamically forced upwelling near the tropopause. Variations in the cold point tropopause (and by inference in global stratospheric water vapor) are closely tied to the near-tropopause mode. These coherent temperature patterns provide further evidence of distinct upper and lower branches of the tropical Brewer–Dobson circulation. Zonal mean temperatures in the lower stratosphere and near the cold point are most strongly coupled to the upper troposphere on time scales of ~(30–60) days, probably linked to the Madden–Julian oscillation (MJO). Enhanced temperature variance near the tropopause is consistent with the long radiative relaxation time scales in the lower stratosphere, which makes this region especially sensitive to low-frequency dynamical forcing.

Full access
William J. Randel
and
Fei Wu

Abstract

Long time records of stratospheric temperatures indicate that substantial cooling has occurred during spring over polar regions of both hemispheres. These cooling patterns are coincident with observed recent ozone depletions. Time series of temperature from radiosonde, satellite, and National Centers for Environmental Prediction reanalysis data are analyzed in order to isolate the space–time structure of the observed temperature changes. The Antarctic data show strong cooling (of order 6–10 K) in the lower stratosphere (∼12–21 km) since approximately 1985. The cooling maximizes in spring (October–December), with small but significant changes extending throughout Southern Hemisphere summer. No Antarctic temperature changes are observed during midwinter. Significant warming is found during spring at the uppermost radiosonde data level (30 mb, ∼24 km). These observed temperature changes are all consistent with model predictions of the radiative response to Antarctic polar ozone depletion. Winter and spring temperatures in Northern Hemisphere polar regions also indicate a strong cooling in the 1990s, and the temperature changes are coherent with observed ozone losses. The overall space–time patterns are similar between both hemispheres, suggesting that the radiative response to ozone depletion is an important component of the Arctic cooling as well.

Full access
William J. Randel
and
Fei Wu

Abstract

Temperature trends derived from historical radiosonde data often show substantial differences compared to satellite measurements. These differences are especially large for stratospheric levels, and for data in the Tropics, where results are based on relatively few stations. Detailed comparisons of one radiosonde dataset with collocated satellite measurements from the Microwave Sounding Unit reveal time series differences that occur as step functions or jumps at many stations. These jumps occur at different times for different stations, suggesting that the differences are primarily related to problems in the radiosonde data, rather than in the satellite record. As a result of these jumps, the radiosondes exhibit systematic cooling biases relative to the satellites. A large number of the radiosonde stations in the Tropics are influenced by these biases, suggesting that cooling in the tropical lower stratosphere is substantially overestimated in these radiosonde data. Comparison of trends from stations with larger and smaller biases suggests the cooling bias extends into the tropical upper troposphere. Significant biases are observed in both daytime and nighttime radiosonde measurements.

Full access
William J. Randel
and
Fei Wu
Full access
William J. Randel
and
Fei Wu

Abstract

Detailed structure of the global quasi-biennial oscillation (QBO) in ozone is analyzed using Stratospheric Aerosol and Gas Experiment II ozone and nitrogen dioxide data. Emphasis is placed on the midlatitude QBO, in particular its vertical structure and seasonal synchronization. The global QBO signal is isolated using a combination of singular-value decomposition and regression analyses, which combine to act as an accurate QBO digital filter. Results show that the midlatitude ozone QBO has a two-cell structure in the vertical (similar to that at the equator), with in-phase maxima in the lower and middle stratosphere. Both upper- and lower-level anomalies contribute important fractions to the midlatitude column amounts. The lower-level maxima have a broad latitudinal structure (˜15°–60°), and collocation with the strongest background gradients suggests that these anomalies result from mean vertical transport. The, middle stratosphere signal maximizes in the subtropics (10°–40°) and is likely due to nitrogen-related chemical effects (which are in turn due to transport variations). The vertically in-phase seasonal synchronization in midlatitudes is evidence of QBO modulation of the winter hemisphere circulation.

Full access
Yingli Niu
,
Fei Xie
, and
Shaohua Wu

Abstract

Using observation and reanalysis data, we investigated the effect of the sea surface temperature anomalies associated with ENSO Modoki from September to October on interannual variations in Antarctic stratospheric ozone from October to November. It was found that the planetary wave anomalies generated by ENSO Modoki in the tropical troposphere propagate to the southern mid- and then high-latitude stratosphere. The planetary wave anomalies have a profound impact on the polar vortex, subsequently affecting the interannual variations in Antarctic stratospheric ozone. Further analysis revealed that the responses of the polar vortex and ozone to ENSO Modoki are mainly modulated by the wave-1 and wave-3 components, and the effect of wave 2 is opposite and offset by those of wave 1 and wave 3. The contribution of the residual waves (after removing waves 1, 2, 3, and the remaining waves) are relatively small. Furthermore, we evaluated the performance of CMIP6 models in simulating the impacts of ENSO Modoki on the southern stratospheric polar vortex and ozone. We selected seven models that include stratospheric processes and stratospheric chemical ozone. We found that all are capable of distinguishing between eastern Pacific ENSO and ENSO Modoki events. However, only GISS-E2-1-G and MPI-ESM-1-2-HAM can simulate the patterns of ozone, circulation, and temperature in the Southern Hemisphere in a manner that closely resembles the reanalysis results. Further analysis indicated that these two models can better simulate the propagation of planetary wave activities in the troposphere forced by ENSO Modoki, whereas the other models produce significantly different results to those obtained from observations.

Significance Statement

This study found a significant connection between ENSO Modoki and the interannual variability of Antarctic stratospheric ozone in austral spring and investigated the underlying physical mechanisms in detail. In addition, the performances of CMIP6 models in simulating the impact of ENSO Modoki on the southern stratospheric polar vortex and ozone were evaluated. This study not only helps to further understand the characteristics of past Antarctic ozone changes but also helps developers improve the performance of models in simulating Antarctic stratospheric changes.

Restricted access
William J. Randel
,
Rolando Garcia
, and
Fei Wu

Abstract

The dynamical balances associated with upwelling in the tropical lower stratosphere are investigated based on climatological 40-yr ECMWF Re-Analysis (ERA-40) and NCEP–NCAR reanalysis data. Zonal mean upwelling is calculated from momentum balance and continuity (“downward control”), and these estimates in the deep tropics are found to be in reasonable agreement with stratospheric upwelling calculated from thermodynamic balance (and also with vertical velocity obtained from ERA-40). The detailed momentum balances associated with the dynamical upwelling are investigated, particularly the contributions to climatological Eliassen–Palm (EP) flux divergence in the subtropics. Results show that the equatorward extension of extratropical waves (baroclinic eddies and, in the NH, quasi-stationary planetary waves) contribute a large component of the subtropical wave driving at 100 hPa. Additionally, there is a significant contribution to subtropical forcing from equatorial planetary waves, which exhibit a strong seasonal cycle (a reversal in phase) in response to latitudinal migration of tropical convection. The observed balances suggest that the strong annual cycle in upwelling across the tropical tropopause is forced by subtropical horizontal eddy momentum flux convergence associated with waves originating in both the tropics and extratropics.

Full access
William J. Randel
,
Fei Wu
, and
Piers Forster

Abstract

Global characteristics of the extratropical tropopause inversion layer identified in radiosonde observations by Birner are studied using high vertical resolution temperature profiles from GPS radio occultation measurements. The GPS data are organized according to the height of the thermal tropopause in each profile, and a temperature inversion layer above the tropopause (with an average magnitude of 3–5 K) is found to be a ubiquitous, climatological feature. The GPS data show that the inversion layer is present for all seasons in both hemispheres, spanning the subtropics to the pole, and there is not strong longitudinal structure. Dependence of the inversion layer on upper-troposphere vorticity is studied; while anticyclones exhibit a substantially stronger inversion than cyclones (as expected from balanced dynamics), the inversion is evident for all circulation types. Radiative transfer calculations indicate that strong gradients in both ozone and water vapor near the tropopause contribute to the inversion. Significant absorption of both longwave and shortwave radiation by ozone occurs, warming the region above the tropopause. Water vapor near and immediately above the tropopause contributes to cooling, effectively enhancing the inversion.

Full access
Anmin Duan
,
Fei Li
,
Meirong Wang
, and
Guoxiong Wu

Abstract

Using a dataset extended by the addition of data for 2004–08, this study reexamined the trend in the sensible heating (SH) flux at 73 meteorological stations over the Tibetan Plateau (TP) during 1980–2008 and investigated its impact on monsoon precipitation in the surrounding region. In contrast to ongoing climate warming, a weakening trend in SH is persistent over most of the plateau, despite a sharp increase in the ground–air temperature difference in 2004–08. The weakening trend in SH over the TP is primarily a response to the spatial nonuniformity of large-scale warming over the East Asian continent, which is characterized by much greater warming amplitude at mid- and high latitudes than over the tropics and subtropics. Furthermore, the suppressed air pump effect, which is driven by SH over the TP and acts as a strong forcing source, gives rise to reduced precipitation along the southern and eastern slopes of the plateau, and increased rainfall over northeastern India and the Bay of Bengal. No significantly stable correlation exists between the SH source over the TP and the overall trend or interdecadal variability in the East Asian or South Asian summer monsoon.

Full access