Search Results

You are looking at 1 - 10 of 20 items for

  • Author or Editor: Fei Xie x
  • All content x
Clear All Modify Search
Ruihuang Xie and Fei-Fei Jin

Abstract

Modern instrumental records reveal that El Niño events differ in their spatial patterns and temporal evolutions. Attempts have been made to categorize them roughly into two main types: eastern Pacific (EP; or cold tongue) and central Pacific (CP; or warm pool) El Niño events. In this study, a modified version of the Zebiak–Cane (MZC) coupled model is used to examine the dynamics of these two types of El Niño events. Linear eigenanalysis of the model is conducted to show that there are two leading El Niño–Southern Oscillation (ENSO) modes with their SST patterns resembling those of two types of El Niño. Thus, they are referred to as the EP and CP ENSO modes. These two modes are sensitive to changes in the mean states. The heat budget analyses demonstrate that the EP (CP) mode is dominated by thermocline (zonal advective) feedback. Therefore, the weak (strong) mean wind stress and deep (shallow) mean thermocline prefer the EP (CP) ENSO mode because of the relative dominance of thermocline (zonal advective) feedback under such a mean state. Consistent with the linear stability analysis, the occurrence ratio of CP/EP El Niño events in the nonlinear simulations generally increases toward the regime where the linear CP ENSO mode has relatively higher growth rate. These analyses suggest that the coexistence of two leading ENSO modes is responsible for two types of El Niño simulated in the MZC model. This model result may provide a plausible scenario for the observed ENSO diversity.

Open access
Fei Zheng, Jianping Li, Lei Wang, Fei Xie, and Xiaofeng Li

Abstract

New evidence suggests that interannual variability in zonal-mean meridional circulation and precipitation can be partially attributed to the Southern Hemisphere annular mode (SAM), the dominant mode of climate variability in the Southern Hemisphere (SH) extratropics. A cross-seasonal correlation exists between the December–February (DJF) SAM and March–May (MAM) zonal-mean meridional circulation and precipitation. This correlation is not confined to the SH: it also extends to the Northern Hemisphere (NH) subtropics. When the preceding DJF SAM is positive, counterclockwise, and clockwise meridional cells, accompanied by less and more precipitation, occur alternately between the SH middle latitudes and NH subtropics in MAM. In particular, less precipitation occurs in the SH middle latitudes, the SH tropics, and the NH subtropics, but more precipitation occurs in the SH subtropics and the NH tropics. A framework is built to explain the cross-seasonal impact of SAM-related SST anomalies. Evidence indicates that the DJF SAM tends to lead to dipolelike SST anomalies in the SH extratropics, which are referred to in this study as the SH ocean dipole (SOD). The DJF SOD can persist until the following MAM when it begins to modulate MAM meridional circulation and large-scale precipitation. Atmospheric general circulation model simulations further verify that MAM meridional circulation between the SH middle latitudes and the northern subtropics responds to the MAM SOD.

Full access
Juan Feng, Jianping Li, and Fei Xie

Abstract

The variability of the boreal spring [March–May (MAM)] Hadley circulation (HC) is investigated, focusing on the long-term variation of the first principal mode for 1951–2008, which is an equatorially asymmetric mode (AM) with the rising branch located around 10°S. This mode explains about 70% of the variance of the MAM HC and shows an obvious upward trend and thus contributes to the strengthening of the MAM HC. The robust warming trends of sea surface temperature (SST) over the Indo-Pacific warm pool (IPWP) play an essential role in the variations of the MAM HC. When SST over the IPWP is warm, anomalous meridional circulation is induced with descending branches located in regions 30°–20°S and 5°–15°N and rising motion located near 10°S. The anomalous rising south of the equator is due to the inhomogeneous warming of SST over the IPWP. SST within the IPWP in the Southern Hemisphere shows a larger warming trend than that in the Northern Hemisphere. The position of the anomalous convergence associated with SST variations over the IPWP is aligned with the maximum meridional gradient of zonal mean SST, resulting in an equatorially asymmetric meridional circulation. This point is further established in theoretical analyses. However, the meridional SST gradient within the IPWP shows a decreasing trend, suggesting the associated anomalous meridional circulation intensifies, which in turn explains the strengthening of the MAM HC. Under this scenario, the accompanied descent in the regions of 30°–20°S and 5°–15°N is enhanced, implying a frequent drought in these regions during MAM.

Full access
Chen Zhao, Zezong Chen, Gengfei Zeng, Longgang Zhang, and Fei Xie

Abstract

A multifrequency high-frequency (MHF) radar system was designed and developed by Wuhan University in 2007. This system can simultaneously operate at four frequencies mainly in the 7.5–25-MHz band. This paper focuses on discussing the performances of an MHF radar system deployed along the coast of the East China Sea based on comparisons with multidepth ADCP datasets, which were obtained from ADCPs deployed at different locations in August 2010 during a small storm. The comparisons illustrate that radar-derived radial currents are correlated with ADCP data at mainly a 2–4-m depth with correlation coefficients over 0.95 and RMS differences less than 0.12 m s−1 for both operating frequencies. Bearing offsets at points A, C, and D are computed for different operating frequencies with magnitudes of 0°–11°.

The capability of MHF radar to measure currents at different depths is explored. The results indicate that the effective depth of current measurements by MHF radar increases with decreasing operating frequency. A linear regression (with a regression coefficient of 0.0576) of the responses in the mean effective depth on the predictors in radio wavelength is obtained. The dominant semidiurnal and diurnal constituents are also analyzed. The radial current amplitudes of the M2 and K1 constituents are strong in this area during this experiment. The residual currents vary with wind speed, with a correlation coefficient of 0.52. A correlation coefficient of 0.79 between nontidal currents and the radial wind speed after a clockwise rotation of the wind vector by about 50° was obtained.

Full access
Cheng Sun, Jianping Li, Juan Feng, and Fei Xie

Abstract

The time series of twentieth-century subtropical eastern Australian rainfall (SEAR) shows evident fluctuations over decadal to multidecadal time scales. Using observations from the period 1900–2013, it was found that SEAR is connected to the North Atlantic Oscillation (NAO) over decadal time scales, with the NAO leading by around 15 yr. The physical mechanism underlying this relationship was investigated. The NAO can have a delayed impact on sea surface temperature (SST) fluctuations in the subpolar Southern Ocean (SO), and these SST changes could in turn contribute to the decadal variability in SEAR through their impacts on the Southern Hemisphere atmospheric circulation. This observed lead of the NAO relative to SO SST and the interhemispheric SST seesaw mechanism are reasonably reproduced in a long-term control simulation of an ocean–atmosphere coupled model. The NAO exerts a delayed effect on the variation of Atlantic meridional overturning circulation that further induces seesaw SST anomalies in the subpolar North Atlantic and SO. With evidence that the NAO precedes SEAR decadal variability via a delayed SO bridge, a linear model for SEAR decadal variability was developed by combination of the NAO and Pacific decadal oscillation (PDO). The observed SEAR decadal variability is considerably well simulated by the linear model, and the relationship between the simulation and observation is stable. SEAR over the coming decade may increase slightly, because of the recent NAO weakening and the return of negative PDO phase.

Full access
Feiyang Wang, Wenshou Tian, Fei Xie, Jiankai Zhang, and Yuanyuan Han

Abstract

This study uses reanalysis datasets and numerical experiments to investigate the influence of the occurrence frequency of the individual phases of the Madden–Julian oscillation (MJO) on the interannual variability of stratospheric wave activity in the middle and high latitudes of the Northern Hemisphere during boreal winter [November–February (NDJF)]. Our analysis reveals that the occurrence frequency of MJO phase 4 in winter is significantly positively correlated with the interannual variability of the Eliassen–Palm (E–P) flux divergence anomalies in the northern extratropical stratosphere; that is, higher (lower) occurrence frequency of MJO phase 4 corresponds to weaker (stronger) upward wave fluxes and increased (decreased) E–P flux divergence anomalies in the middle and upper stratosphere at mid-to-high latitudes, which implies depressed (enhanced) wave activity accompanied by a stronger (weaker) polar vortex in that region. The convection anomalies over the Maritime Continent related to MJO phase 4 excite a Rossby wave train that propagates poleward to middle and high latitudes, and is in antiphase with the climatological stationary waves of wavenumber 1 at middle and high latitudes. As the spatial distribution of the convection anomalies during MJO phase 7 has an almost opposite, but weaker, pattern to that during MJO phase 4, the occurrence frequency of MJO phase 7 has an opposite and weaker effect on the northern extratropical stratosphere to MJO phase 4. However, the other MJO phases (1, 2, 3, 5, 6, and 8) cannot significantly influence the northern extratropical stratosphere because the wave responses in these phases are neither totally in nor out of phase with the background stationary wavenumber 1.

Full access
Jiankai Zhang, Wenshou Tian, Ziwei Wang, Fei Xie, and Feiyang Wang

Abstract

The influence of El Niño–Southern Oscillation (ENSO) on northern midlatitude ozone during the period January–March (JFM) is investigated using various observations and a chemistry–climate model. The analysis reveals that, during El Niño events, there are noticeable anomalously high total ozone column (TOC) values over the North Pacific, the southern United States, northeastern Africa, and East Asia but anomalously low values in central Europe and over the North Atlantic. La Niña events have almost the opposite effects on TOC anomalies. The longitudinal dependence of midlatitude ozone anomalies associated with ENSO events during the period JFM is found to be related to planetary waves. Planetary waves excited by tropical convection propagate into the middle latitudes and give rise to longwave trains (Pacific–North American pattern) and shortwave trains along the North African–Asian jet. These wave trains affect ozone in the upper troposphere and lower stratosphere (UTLS) by modulating the midlatitude tropopause height and cause TOC anomalies by changing the vertical distributions of ozone. In addition, synoptic-scale Rossby wave breaking increases on the poleward flanks of the enhanced westerly jet during El Niño events, leading to a stronger eddy-driven meridional circulation in the UTLS and hence causing TOC increases over the North Pacific, the southern United States, northeastern Africa, and East Asia and vice versa for La Niña events. It is also found that the contribution of changes in Brewer–Dobson circulation due to anomalous planetary wave dissipation in the stratosphere during ENSO events to TOC changes in the middle latitudes for the period JFM is small, not more than 1 Dobson unit (DU) per month.

Full access
Jianchuan Shu, Wenshou Tian, Dingzhu Hu, Jiankai Zhang, Lin Shang, Hongying Tian, and Fei Xie

Abstract

Using satellite observations together with a chemistry–climate model (CCM), the effect of the stratospheric semiannual oscillation (SAO) and quasi-biennial oscillation (QBO) on the equatorial double peak in observed CH4 and NO2 is reexamined. It is concluded that the lower-equatorial Halogen Occultation Experiment (HALOE) CH4 mixing ratio of the April double peak in 1993 and 1995 was associated with the prominent first cycle of the SAO westerlies, which causes local vertical downwelling in the upper equatorial stratosphere. The observational evidences imply that the strong westerlies of the first cycle of the stratospheric SAO in 1993 and 1995 were driven by enhanced lower-stratospheric gravity wave activity in the early parts of those years. The CCM simulations further verify that the gravity wave source strength has a large impact on the development and strength of the SAO westerlies. This result suggests that the equatorial long-lived tracer mixing ratio near the stratopause (which is associated with the strength of the SAO westerlies) was not only modulated by the QBO phase, but was also significantly influenced by interannual variation in the gravity waves. It is also found that the deeper equatorial trough of the double peak is unlikely to be always accompanied by the more prominent Northern Hemispheric lobe, and the Northern Hemispheric lobe of the double peak can be mainly attributed to subtropical upwelling. The altitude of greatest chemical destruction anomalies associated with the SAO and QBO is below the trough of the double peak, implying that the effect of the chemical process on the double peak is insignificant.

Full access
Fei Xie, Xuan Ma, Jianping Li, Wenshou Tian, Chengqing Ruan, and Cheng Sun

Abstract

A linear regression model is constructed to predict the April–May precipitation in central China (PCC) with a lead time of 1–2 months. This model not only reproduces the historical April–May PCC from 1985 to 2006 but also demonstrates strong robustness and reliability during the independent test period of 2007–16. Two preceding factors are selected to build the model, the February–March Arctic stratospheric ozone (ASO) and Indian Ocean sea surface temperature (IOSST), indicating a synergistic impact of Arctic and tropical signals on the midlatitude climate. A possible mechanism of ASO changes affecting Chinese precipitation is that the stratospheric circulation anomalies related to ASO changes may downward influence circulation over North Pacific, and then extend westward to influence East Asia, leading to changes in Chinese precipitation. Anomalies of the other predictor, IOSST, are associated with a baroclinic structure over central China. For example, warm IOSST causes anomalous convection over central China and affects the warm and humid airstream flowing from the Pacific to China. These processes related to the two predictors result in the April–May PCC anomalies. Sensitivity experiments and a transient experiment covering a longer period than the observations/reanalysis support the results from our statistical analysis based on observations. It implies that this statistical model could be applied to the output of seasonal forecasts from observations and improve the forecasting ability of April–May PCC in the future.

Free access
Juan Feng, Jianping Li, Fred Kucharski, Yaqi Wang, Cheng Sun, Fei Xie, and Yun Yang

Abstract

By decomposing the variations of the Hadley circulation (HC) and tropical zonal-mean sea surface temperature (SST) into the equatorially asymmetric (HEA for HC, SEA for SST) and symmetric (HES for HC, SES for SST) components, the varying response of the HC to different SST meridional structures under warm and cold conditions of the Indo-Pacific warm pool (IPWP) is investigated over the period 1979–2016. The response of the HC to SST evidences an asymmetric variation between warm and cold IPWP conditions; that is, the response ratio of HEA to SEA relative to that of HES to SES is ~5 under warm conditions and ~2 under cold conditions. This asymmetry is primarily due to a decrease in the HEA-to-SEA ratio under cold IPWP conditions, and is driven by changes in the meridional distribution of SST anomalies. Equatorial asymmetric (symmetric) SST anomalies are dominated by warm (cold) IPWP conditions. Thus, variations of SEA are suppressed under cold IPWP conditions, contributing to the observed weakening of the HEA-to-SEA ratio. The results presented here indicate that the HC is more sensitive to the underlying SST when the IPWP is warmer, during which the variation of SEA is enhanced, suggesting a recent strengthening of the response of the HC to SST, as the IPWP has warmed over the past several decades, and highlighting the importance of the IPWP meridional structures rather than the overall warming of the HC.

Full access