Search Results
You are looking at 1 - 7 of 7 items for
- Author or Editor: Feili Li x
- Refine by Access: All Content x
Abstract
Although proxies have generally been used to study deep ocean convection and overturning circulation in the Labrador Sea, their efficacy has not been explicitly evaluated because observations that directly measure those variables are scarce. In this study, the volume of newly formed Labrador Sea Water (LSW) and the overturning circulation in the Labrador Sea are estimated using observational data and output from a high-resolution ocean model and then compared to proxies used to represent those variables. The comparisons reveal the limitations of proxies, highlighting the desirability of robust estimates derived from direct monitoring in the region [i.e., from Argo and Overturning in the Subpolar North Atlantic Program (OSNAP)]. A linkage among LSW formation, overturning circulation in the Labrador Sea, and the export of LSW from the basin on interannual time scales is found in the model.
Abstract
Although proxies have generally been used to study deep ocean convection and overturning circulation in the Labrador Sea, their efficacy has not been explicitly evaluated because observations that directly measure those variables are scarce. In this study, the volume of newly formed Labrador Sea Water (LSW) and the overturning circulation in the Labrador Sea are estimated using observational data and output from a high-resolution ocean model and then compared to proxies used to represent those variables. The comparisons reveal the limitations of proxies, highlighting the desirability of robust estimates derived from direct monitoring in the region [i.e., from Argo and Overturning in the Subpolar North Atlantic Program (OSNAP)]. A linkage among LSW formation, overturning circulation in the Labrador Sea, and the export of LSW from the basin on interannual time scales is found in the model.
Abstract
A transbasin monitoring array from Labrador to Scotland was deployed in the summer of 2014 as part of the Overturning in the Subpolar North Atlantic Program (OSNAP). The aim of the observing system is to provide a multiyear continuous measure of the Atlantic meridional overturning circulation (AMOC) and the associated meridional heat and freshwater transports in the subpolar North Atlantic. Results from the array are expected to improve the understanding of the variability of the subpolar transports and the nature and degree of the AMOC’s latitudinal dependence. In this present work, the measurements of the OSNAP array are described and a suite of observing system simulation experiments in an eddy-permitting numerical model are used to assess how well these measurements will estimate the fluxes across the OSNAP section. The simulation experiments indicate that the OSNAP array and calculation methods will adequately capture the mean and temporal variability of the overturning circulation and of the heat and freshwater transports across the subpolar North Atlantic.
Abstract
A transbasin monitoring array from Labrador to Scotland was deployed in the summer of 2014 as part of the Overturning in the Subpolar North Atlantic Program (OSNAP). The aim of the observing system is to provide a multiyear continuous measure of the Atlantic meridional overturning circulation (AMOC) and the associated meridional heat and freshwater transports in the subpolar North Atlantic. Results from the array are expected to improve the understanding of the variability of the subpolar transports and the nature and degree of the AMOC’s latitudinal dependence. In this present work, the measurements of the OSNAP array are described and a suite of observing system simulation experiments in an eddy-permitting numerical model are used to assess how well these measurements will estimate the fluxes across the OSNAP section. The simulation experiments indicate that the OSNAP array and calculation methods will adequately capture the mean and temporal variability of the overturning circulation and of the heat and freshwater transports across the subpolar North Atlantic.
Abstract
The variability of the sea surface height anomaly (SSHA) in the mid- to high-latitude North Atlantic for the period of 1993–2010 was investigated using the ensemble empirical mode decomposition to identify the dominant time scales. Sea level variations in the North Atlantic subpolar gyre (SPG) are dominated by the annual cycle and the long-term increasing trend. In comparison, the SSHA along the Gulf Stream (GS) is dominated by variability at intraseasonal and annual time scales. Moreover, the sea level rise in the SPG developed at a reduced rate in the 2000s compared to rates in the 1990s, which was accompanied by a rebound in SSHA variability following a period of lower variability in the system. These changes in both apparent trend and low-frequency SSHA oscillations reveal the importance of low-frequency variability in the SPG. To identify the possible contributing factors for these changes, the heat content balance (equivalent variations in the sea level) in the subpolar region was examined. The results indicate that horizontal circulations may primarily contribute to the interannual to decadal variations, while the air–sea heat flux is not negligible at annual time scale. Furthermore, the low-frequency variability in the SPG relates to the propagation of Atlantic meridional overturning circulation (AMOC) variations from the deep-water formation region to midlatitudes in the North Atlantic, which might have the implications for recent global surface warming hiatus.
Abstract
The variability of the sea surface height anomaly (SSHA) in the mid- to high-latitude North Atlantic for the period of 1993–2010 was investigated using the ensemble empirical mode decomposition to identify the dominant time scales. Sea level variations in the North Atlantic subpolar gyre (SPG) are dominated by the annual cycle and the long-term increasing trend. In comparison, the SSHA along the Gulf Stream (GS) is dominated by variability at intraseasonal and annual time scales. Moreover, the sea level rise in the SPG developed at a reduced rate in the 2000s compared to rates in the 1990s, which was accompanied by a rebound in SSHA variability following a period of lower variability in the system. These changes in both apparent trend and low-frequency SSHA oscillations reveal the importance of low-frequency variability in the SPG. To identify the possible contributing factors for these changes, the heat content balance (equivalent variations in the sea level) in the subpolar region was examined. The results indicate that horizontal circulations may primarily contribute to the interannual to decadal variations, while the air–sea heat flux is not negligible at annual time scale. Furthermore, the low-frequency variability in the SPG relates to the propagation of Atlantic meridional overturning circulation (AMOC) variations from the deep-water formation region to midlatitudes in the North Atlantic, which might have the implications for recent global surface warming hiatus.
Abstract
While it has generally been understood that the production of Labrador Sea Water (LSW) impacts the Atlantic meridional overturning circulation (MOC), this relationship has not been explored extensively or validated against observations. To explore this relationship, a suite of global ocean–sea ice models forced by the same interannually varying atmospheric dataset, varying in resolution from non-eddy-permitting to eddy-permitting (1°–1/4°), is analyzed to investigate the local and downstream relationships between LSW formation and the MOC on interannual to decadal time scales. While all models display a strong relationship between changes in the LSW volume and the MOC in the Labrador Sea, this relationship degrades considerably downstream of the Labrador Sea. In particular, there is no consistent pattern among the models in the North Atlantic subtropical basin over interannual to decadal time scales. Furthermore, the strong response of the MOC in the Labrador Sea to LSW volume changes in that basin may be biased by the overproduction of LSW in many models compared to observations. This analysis shows that changes in LSW volume in the Labrador Sea cannot be clearly and consistently linked to a coherent MOC response across latitudes over interannual to decadal time scales in ocean hindcast simulations of the last half century. Similarly, no coherent relationships are identified between the MOC and the Labrador Sea mixed layer depth or the density of newly formed LSW across latitudes or across models over interannual to decadal time scales.
Abstract
While it has generally been understood that the production of Labrador Sea Water (LSW) impacts the Atlantic meridional overturning circulation (MOC), this relationship has not been explored extensively or validated against observations. To explore this relationship, a suite of global ocean–sea ice models forced by the same interannually varying atmospheric dataset, varying in resolution from non-eddy-permitting to eddy-permitting (1°–1/4°), is analyzed to investigate the local and downstream relationships between LSW formation and the MOC on interannual to decadal time scales. While all models display a strong relationship between changes in the LSW volume and the MOC in the Labrador Sea, this relationship degrades considerably downstream of the Labrador Sea. In particular, there is no consistent pattern among the models in the North Atlantic subtropical basin over interannual to decadal time scales. Furthermore, the strong response of the MOC in the Labrador Sea to LSW volume changes in that basin may be biased by the overproduction of LSW in many models compared to observations. This analysis shows that changes in LSW volume in the Labrador Sea cannot be clearly and consistently linked to a coherent MOC response across latitudes over interannual to decadal time scales in ocean hindcast simulations of the last half century. Similarly, no coherent relationships are identified between the MOC and the Labrador Sea mixed layer depth or the density of newly formed LSW across latitudes or across models over interannual to decadal time scales.
Abstract
Fresh Arctic waters flowing into the Atlantic are thought to have two primary fates. They may be mixed into the deep ocean as part of the overturning circulation, or flow alongside regions of deep water formation without impacting overturning. Climate models suggest that as increasing amounts of freshwater enter the Atlantic, the overturning circulation will be disrupted, yet we lack an understanding of how much freshwater is mixed into the overturning circulation’s deep limb in the present day. To constrain these freshwater pathways, we build steady-state volume, salt, and heat budgets east of Greenland that are initialized with observations and closed using inverse methods. Freshwater sources are split into oceanic Polar Waters from the Arctic and surface freshwater fluxes, which include net precipitation, runoff, and ice melt, to examine how they imprint the circulation differently. We find that 65 mSv (1 Sv ≡ 106 m3 s−1) of the total 110 mSv of surface freshwater fluxes that enter our domain participate in the overturning circulation, as do 0.6 Sv of the total 1.2 Sv of Polar Waters that flow through Fram Strait. Based on these results, we hypothesize that the overturning circulation is more sensitive to future changes in Arctic freshwater outflow and precipitation, while Greenland runoff and iceberg melt are more likely to stay along the coast of Greenland.
Abstract
Fresh Arctic waters flowing into the Atlantic are thought to have two primary fates. They may be mixed into the deep ocean as part of the overturning circulation, or flow alongside regions of deep water formation without impacting overturning. Climate models suggest that as increasing amounts of freshwater enter the Atlantic, the overturning circulation will be disrupted, yet we lack an understanding of how much freshwater is mixed into the overturning circulation’s deep limb in the present day. To constrain these freshwater pathways, we build steady-state volume, salt, and heat budgets east of Greenland that are initialized with observations and closed using inverse methods. Freshwater sources are split into oceanic Polar Waters from the Arctic and surface freshwater fluxes, which include net precipitation, runoff, and ice melt, to examine how they imprint the circulation differently. We find that 65 mSv (1 Sv ≡ 106 m3 s−1) of the total 110 mSv of surface freshwater fluxes that enter our domain participate in the overturning circulation, as do 0.6 Sv of the total 1.2 Sv of Polar Waters that flow through Fram Strait. Based on these results, we hypothesize that the overturning circulation is more sensitive to future changes in Arctic freshwater outflow and precipitation, while Greenland runoff and iceberg melt are more likely to stay along the coast of Greenland.
Abstract
For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017.
Abstract
For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017.