Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: François Roy x
  • Refine by Access: All Content x
Clear All Modify Search
Pierre Pellerin
,
Harold Ritchie
,
François J. Saucier
,
François Roy
,
Serge Desjardins
,
Michel Valin
, and
Vivian Lee

Abstract

The purpose of this study is to present the impacts of a fully interactive coupling between an atmospheric and a sea ice model over the Gulf of St. Lawrence, Canada. The impacts are assessed in terms of the atmospheric and sea ice forecasts produced by the coupled numerical system. The ocean-ice model has been developed at the Maurice Lamontagne Institute, where it runs operationally at a horizontal resolution of 5 km and is driven (one-way coupling) by atmospheric model forecasts provided by the Meteorological Service of Canada (MSC). In this paper the importance of two-way coupling is assessed by comparing the one-way coupled version with a two-way coupled version in which the atmospheric model interacts with the sea ice model during the simulation. The impacts are examined for a case in which the sea ice conditions are changing rapidly. Two atmospheric model configurations have been studied. The first one has a horizontal grid spacing of 24 km, which is the operational configuration used at the Canadian Meteorological Centre. The second one is a high-resolution configuration with a 4-km horizontal grid spacing. A 48-h forecast has been validated using satellite images for the ice and the clouds, and also using the air temperature and precipitation observations. It is shown that the two-way coupled system improves the atmospheric forecast and has a direct impact on the sea ice forecast. It is also found that forecasts are improved with a fine resolution that better resolves the physical events, fluxes, and forcing. The coupling technique is also briefly described and discussed.

Full access
Hai Lin
,
William J. Merryfield
,
Ryan Muncaster
,
Gregory C. Smith
,
Marko Markovic
,
Frédéric Dupont
,
François Roy
,
Jean-François Lemieux
,
Arlan Dirkson
,
Viatcheslav V. Kharin
,
Woo-Sung Lee
,
Martin Charron
, and
Amin Erfani

Abstract

The second version of the Canadian Seasonal to Interannual Prediction System (CanSIPSv2) was implemented operationally at Environment and Climate Change Canada (ECCC) in July 2019. Like its predecessors, CanSIPSv2 applies a multimodel ensemble approach with two coupled atmosphere–ocean models, CanCM4i and GEM-NEMO. While CanCM4i is a climate model, which is upgraded from CanCM4 of the previous CanSIPSv1 with improved sea ice initialization, GEM-NEMO is a newly developed numerical weather prediction (NWP)-based global atmosphere–ocean coupled model. In this paper, CanSIPSv2 is introduced, and its performance is assessed based on the reforecast of 30 years from 1981 to 2010, with 10 ensemble members of 12-month integrations for each model. Ensemble seasonal forecast skill of 2-m air temperature, 500-hPa geopotential height, precipitation rate, sea surface temperature, and sea ice concentration is assessed. Verification is also performed for the Niño-3.4, the Pacific–North American pattern (PNA), the North Atlantic Oscillation (NAO), and the Madden–Julian oscillation (MJO) indices. It is found that CanSIPSv2 outperforms the previous CanSIPSv1 system in many aspects. Atmospheric teleconnections associated with the El Niño–Southern Oscillation (ENSO) are reasonably well captured by the two CanSIPSv2 models, and a large part of the seasonal forecast skill in boreal winter can be attributed to the ENSO impact. The two models are also able to simulate the Northern Hemisphere teleconnection associated with the tropical MJO, which likely provides another source of skill on the subseasonal to seasonal time scale.

Open access
Gregory C. Smith
,
Jean-Marc Bélanger
,
François Roy
,
Pierre Pellerin
,
Hal Ritchie
,
Kristjan Onu
,
Michel Roch
,
Ayrton Zadra
,
Dorina Surcel Colan
,
Barbara Winter
,
Juan-Sebastian Fontecilla
, and
Daniel Deacu

Abstract

The importance of coupling between the atmosphere and the ocean for forecasting on time scales of hours to weeks has been demonstrated for a range of physical processes. Here, the authors evaluate the impact of an interactive air–sea coupling between an operational global deterministic medium-range weather forecasting system and an ice–ocean forecasting system. This system was developed in the context of an experimental forecasting system that is now running operationally at the Canadian Centre for Meteorological and Environmental Prediction. The authors show that the most significant impact is found to be associated with a decreased cyclone intensification, with a reduction in the tropical cyclone false alarm ratio. This results in a 15% decrease in standard deviation errors in geopotential height fields for 120-h forecasts in areas of active cyclone development, with commensurate benefits for wind, temperature, and humidity fields. Whereas impacts on surface fields are found locally in the vicinity of cyclone activity, large-scale improvements in the mid-to-upper troposphere are found with positive global implications for forecast skill. Moreover, coupling is found to produce fairly constant reductions in standard deviation error growth for forecast days 1–7 of about 5% over the northern extratropics in July and August and 15% over the tropics in January and February. To the authors’ knowledge, this is the first time a statistically significant positive impact of coupling has been shown in an operational global medium-range deterministic numerical weather prediction framework.

Open access