Search Results

You are looking at 1 - 10 of 63 items for

  • Author or Editor: Frank D. Marks x
  • Refine by Access: All Content x
Clear All Modify Search
Frank D. Marks Jr.

Abstract

Reflectivity data from the airborne radar systems on board the three NOAA aircraft were gathered during six consecutive days in Hurricane Allen of 1980. The data have been used to specify the horizontal and vertical precipitation distribution within 111 km radius of the hurricane center. The evolution of the structure and intensity of the precipitation in the storm is described from representative time composite radar maps for seven research flights made during the 6-day period.

The eyewall was characterized by a narrow ring (12–15 km wide) of intense reflectivity (42–47 dBZ) surrounding the center of the storm at a radius that varied in time from 12–40 km. The eyewall had steep radial gradients of reflectivity (4–5 dB km−1) and tilted radially outward in height. The rainbands were characterized by areas of enhanced reflectivity embedded in a region of stratiform rainfall that contained a distinct bright band at the height of the 0°C isotherm.

The most striking changes in structure during the 6-day period were the rapid contraction in eyewall radius and the development of a secondary ring of intense reflectivity 80–100 km from the storm center. These changes in eye radius appeared to be related to the vortex evolution, as discussed by Willoughby and others.

Changes in storm intensity, coincident with the eyewall radius changes, seemed to have little effect on the total storm rainfall or latent heat release. The maximum storm rainfall occurred when the storm had a double eyewall structure. After the period of the double eyewall, the mean rain rate in the eyewall increased as the storm approached maximum intensity. However, coincident with the increase in eyewall rain rate, the eyewall area decreased, resulting in little change in the total storm rainfall.

The sequence of time composites provided the first opportunity to describe, quantitatively, the precipitation distribution within 111 km of the center of a mature hurricane that was away from land influences. The rainfall analysis showed that the mean rain rates in the eyewall were a factor of 6 greater than those outside the eyewall (11.3 mm h−1 versus 1.8 mm h−1), but because the eyewall region encompassed such a small area, it only contributed 40% of the total rainfall within a radius of 1° latitude of the storm center. The precipitation distribution around the storm was asymmetric; more rainfall occurred ahead of the storm than behind. In general, the maximum precipitation in the eyewall region was within 15–20° of the storm track. The maximum rainfall in the rainband region was 40–50° to the right of that in the eyewall.

Full access
Frank D. Marks Jr.

Abstract

Radar played an important role in studies of tropical cyclones since it was developed in the 1940s. In the last 15 years, technological improvements such as the U.S. National Oceanic and Atmospheric Administration (NOAA) WP-3D tail airborne Doppler radar, the operational Weather Service Radar 1988-Doppler (WSR-88D) radar network, portable Doppler radars, and the first spaceborne radar system on the National Aeronautics and Space Administration Tropical Rainfall Measuring Mission (NASA TRMM) satellite have produced a new generation of tropical cyclone data whose analysis has given scientists an unprecedented opportunity to document the dynamics and rainfall of tropical cyclones, and has led to improved understanding of these devastating storms.

The NOAA WP-3D airborne Doppler datasets led to improved understanding of the symmetric vortex and the major asymmetries. The addition of a second airborne Doppler radar on the other WP-3D enabled true dual-Doppler analyses and the ability to study the temporal evolution of the Kinematic structure over 3–6 h. The advent of the WSR-88D Doppler radar network, and the construction of portable Doppler radars that can be moved to a location near tropical cyclone landfall, has also generated new and unique datasets enabling improved understanding of 1) severe weather events associated with landfalling tropical cyclones, 2) boundary layer wind structure as the storm moves from over the sea to over land, and 3) spatial and temporal changes in the storm rain distribution. The WP-3D airborne Doppler and WSR-88D data have also been instrumental in developing a suite of operational single Doppler radar algorithms to objectively analyze a tropical cyclone's wind field by determining the storm location and defining the primary, secondary, and major asymmetric circulations. These algorithms are used operationally on the WP-3D aircraft and on the ground at NOAA's Tropical Prediction Center/National Hurricane Center.

The WSR-88D rainfall data, together with new satellite microwave passive and active sensors on the NASA TRMM satellite, are proving useful in studies of the temporal and spatial variability of rain in tropical cyclones. The instantaneous satellite snapshots provide rain estimates to improve our understanding of tropical cyclone rain distributions globally, providing estimates from one instrument and common algorithms in each basin, while the WSR-88D provides high-temporal-resolution rain estimates (1 h), to improve our understanding of the temporal variability of the rain as the storm makes landfall.

While these new datasets have led to improved understanding, they have also led to a number of new challenges that the radar meteorology community must face by transferring the understanding gained into new applications and improved numerical weather prediction. These challenges will drive our science well into the next century.

Full access
Frank Roux and Frank D. Marks Jr.

Abstract

The authors present an improved version of the velocity track display (VTD) method, proposed by Lee et al., to deduce the primary vortex circulation in hurricanes from airborne Doppler radar data obtained during straightline legs through the storm center. VTD allows the derivation of one projection of the mean horizontal wind, the wavenumber 0, 1, and 2 components of the tangential wind and one projection of the radial wind, in a series of concentric rings centered on the storm circulation center. The extended VTD (EVTD) algorithm determines additional information through a combination of data collected during successive legs: the Cartesian components of the mean horizontal wind; the wavenumber 0, 1, and 2 components of the tangential wind; and the wavenumber 0 and 1 components of the radial wind.

Application of EVTD to airborne Doppler data collected on 17 September 1989 in Hurricane Hugo is discussed. Comparisons between the EVTD-derived winds, the flight-level measurements, and winds deduced from “pseudo-dual-Doppler” analyses show qualitatively good agreement. These results reveal the asymmetric structure of the storm and show that it was in a deepening stage, with increasing tangential wind, inflow, and upward velocity. Further applications are finally discussed.

Full access
George Andrew Soukup and Frank D. Marks

Abstract

To determine how well a low-order wavenumber representation describes a hurricane wind speed field, given its natural variability in space and time, low-order wavenumber representations were calculated for hourly “snapshots” of the 10-m wind speed field generated by the current operational hurricane model. Two distinct periods were examined: the first when the storm is in a reasonably steady state over 7–8 h and the second where the storm is changing its internal structure over a similar time interval. Observing system sensitivity experiments were also performed using wind speed field time series obtained from interpolation of the model snapshots for each of the two periods. The time series were sampled along the flight legs of a typical “figure four” aircraft flight pattern to simulate the surface wind data collection process to ascertain the effects of the wind speed field’s temporal and spatial variability upon the low-order wavenumber analyses.

The comparison between the model wind speed field at any time and the wavenumber representations during the “steady state” period shows that the essential features of the wind speed field are captured by wavenumbers 0 and 1 and that including up to wavenumber 3 practically reproduces the model field. However, in the “nonsteady” period the wavenumber 0 and 1 representation is frequently unable to capture the essential characteristics of the wind speed field. The observing system sensitivity experiments suggest that when the primary circulation is rapidly changing in amplitude and/or structure during the data collection period, the low-order wavenumbers analysis of the wind speed field will only represent the temporal mean structure.

Full access
Howard B. Bluestein and Frank D. Marks Jr.

Abstract

Features seen in aerial and satellite photographs of the inside edge of the eyewall of Hurricane Diana (1984) are compared with features seen in digitized three-dimensional airborne radar reflectivity data. The photographs show regularly spaced, upwind and downshear tilted striations in the northeast, east, and southeast sectors of the eyewall that are nearly collocated with upwind-tilted axes of relative reflectivity maxima of approximately 15 dBZ.

Full access
Wen-Chau Lee and Frank D. Marks Jr.

Abstract

This paper is the second of a series and focuses on developing an algorithm to objectively identify tropical cyclone (TC) vorticity centers using single-Doppler radar data. The first paper dealt with the formulation of a single-Doppler radar TC wind retrieval technique, the ground-based velocity-track-display (GBVTD), and the results are verified using analytical TCs. It has been acknowledged that the quality of the GBVTD-retrieved TC circulation strongly depends on accurately knowing its center position. However, existing single-Doppler radar center finding algorithms are limited to estimate centers for axisymmetric TCs. The proposed algorithm uses a simplex method to objectively estimate the TC vorticity center by maximizing GBVTD-retrieved mean tangential wind.

When tested with a number of axisymmetric and asymmetric analytical TCs, the accuracy of the TC centers estimated by the GBVTD-simplex algorithm is ≈340 m from the true center. When adding 5 m s−1 random noise to the Doppler velocities, the accuracy of the TC centers is nearly unchanged at 350 m. When applying the GBVTD-simplex algorithm to Typhoon Alex (1987), the estimated uncertainty varies between 0.1 and 2 km. When the overall velocity gradient is weak, the uncertainties in the retrieved TC centers are usually large. The GBVTD-simplex algorithm sometimes has problems finding a solution when a large sector of Doppler radar data is missing in conjunction with weak velocity gradients.

The GBVTD-simplex algorithm significantly reduces the uncertainties in estimating TC center position compared with existing methods and improves the quality of the GBVTD-retrieved TC circulation. The GBVTD-simplex algorithm is computationally efficient and can be easily adapted for real-time applications.

Full access
Frank D. Marks Jr. and Pauline M. Austin

Abstract

Precipitation patterns have been analyzed for six wintertime storms in New England where coastal fronts developed and for two without coastal fronts. In all of the storms the predominant precipitation features, as observed by radar, were mesoscale bands which contained convective cells, a pattern typical of extratropical cyclones. Vertical profiles of potential temperature, humidity and wind indicate that most of the condensation occurred in a layer of warm moist air lifted by synoptic-scale ascent ahead of the baroclinic disturbance. Cumulus convection was initiated in a shallow unstable region at the top of the warm moist layer. The coastal front circulations apparently developed independently of the large-scale baroclinically induced circulations and were very shallow, typically 300 m in depth. They had durations of 7–15 h and existed during most of the time when the precipitation bands were passing over eastern Massachusetts. The effect of the coastal fronts was to enhance the precipitation over an area about 80 km wide along a line between Boston, Massachusetts, and Providence, Rhode Island, with the average increase ranging from 13 to 147%. The mechanism for precipitation enhancement appears to be creation of low cloud by the coastal front circulation. The cloud droplets are then accreted by snow-flakes which originated at higher levels.

Full access
Jun A. Zhang and Frank D. Marks

Abstract

This study examines the effects of horizontal diffusion on tropical cyclone (TC) intensity change and structure using idealized simulations of the Hurricane Weather Research and Forecasting Model (HWRF). A series of sensitivity experiments were conducted with varying horizontal mixing lengths (L h), but kept the vertical diffusion coefficient and other physical parameterizations unchanged. The results show that both simulated maximum intensity and intensity change are sensitive to the L h used in the parameterization of the horizontal turbulent flux, in particular, for L h less than the model’s horizontal resolution. The results also show that simulated storm structures such as storm size, kinematic boundary layer height, and eyewall slope are sensitive to L h as well. However, L h has little impact on the magnitude of the surface inflow angle and thermodynamic mixed layer height. Angular momentum budget analyses indicate that the effect of L h is to mainly spin down a TC vortex. Both mean and eddy advection terms in the angular momentum budget are affected by the magnitude of L h. For smaller L h, the convergence of angular momentum is larger in the boundary layer, which leads to a faster spinup of the vortex. The resolved eddy advection of angular momentum plays an important role in the spinup of the low-level vortex inward from the radius of the maximum wind speed when L h is small.

Full access
John F. Gamache, Frank D. Marks Jr., and Frank Roux

Abstract

Three different airborne Doppler radar sampling strategies were tested in Hurricane Gustav (1990) on 29 August 1990. The two new strategies were the fore-aft scanning technique (FAST) and airborne dual-platform Doppler sampling. FAST employs radar mans in cones pointing alternately fore and aft of the vertical plane that is perpendicular to the flight track. The airborne dual-platform sampling uses two Doppler radars, each aboard a separate aircraft. The Doppler radars scan strictly in the vertical plant normal to the flight track. The aircraft fly simultaneously along different, preferably perpendicular, tracks. The third strategy tested in Hurricane Gustav was single-platform sampling, which uses one Doppler radar on one aircraft that flies two consecutive, usually orthogonal, flight tracks. The antenna scans in the plane normal to the flight track. The third technique had been used previously in hurricanes and other disturbed weather.

The rms differences between the aircraft in situ winds and the Doppler winds derived near the aircraft by single-platform sampling, dual-platform sampling, and FAST are found to be 7.8, 5.1, and 2.5 m s−1, respectively. These results suggest that in hurricanes dual-platform flat-plane sampling and FAST both enable substantial improvements in the accuracy and temporal resolution of airborne Doppler wind fields over those obtained from single-platform, fiat-plane scanning. The FAST results should be applicable to dual-beam sampling, which began in 1991. The actual rms errors of Doppler winds far from the flight tracks, at levels well above flight level, and in highly sheared environments may be significantly higher than the above differences.

Full access
Sim D. Aberson, Jason P. Dunion, and Frank D. Marks Jr.

Abstract

A photograph of a wavenumber-2 asymmetry in the eye of Hurricane Erin taken during a NOAA WP-3D research flight during the Fourth Convection and Moisture Experiment (CAMEX-4) field program on 10 September 2001 is described. The photograph of the cloud structure within the eye is evaluated using airborne and satellite remote sensing observations, and a possible explanation for the asymmetry is presented.

Full access