Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Frederic Castruccio x
  • All content x
Clear All Modify Search
Yohan Ruprich-Robert, Thomas Delworth, Rym Msadek, Frederic Castruccio, Stephen Yeager, and Gokhan Danabasoglu

Abstract

The impacts of the Atlantic multidecadal variability (AMV) on summertime North American climate are investigated using three coupled global climate models (CGCMs) in which North Atlantic sea surface temperatures (SSTs) are restored to observed AMV anomalies. Large ensemble simulations are performed to estimate how AMV can modulate the occurrence of extreme weather such as heat waves. It is shown that, in response to an AMV warming, all models simulate a precipitation deficit and a warming over northern Mexico and the southern United States that lead to an increased number of heat wave days by about 30% compared to an AMV cooling. The physical mechanisms associated with these impacts are discussed. The positive tropical Atlantic SST anomalies associated with the warm AMV drive a Matsuno–Gill-like atmospheric response that favors subsidence over northern Mexico and the southern United States. This leads to a warming of the whole tropospheric column, and to a decrease in relative humidity, cloud cover, and precipitation. Soil moisture response to AMV also plays a role in the modulation of heat wave occurrence. An AMV warming favors dry soil conditions over northern Mexico and the southern United States by driving a year-round precipitation deficit through atmospheric teleconnections coming both directly from the North Atlantic SST forcing and indirectly from the Pacific. The indirect AMV teleconnections highlight the importance of using CGCMs to fully assess the AMV impacts on North America. Given the potential predictability of the AMV, the teleconnections discussed here suggest a source of predictability for the North American climate variability and in particular for the occurrence of heat waves at multiyear time scales.

Full access
Frederic S. Castruccio, Yohan Ruprich-Robert, Stephen G. Yeager, Gokhan Danabasoglu, Rym Msadek, and Thomas L. Delworth

Abstract

Observed September Arctic sea ice has declined sharply over the satellite era. While most climate models forced by observed external forcing simulate a decline, few show trends matching the observations, suggesting either model deficiencies or significant contributions from internal variability. Using a set of perturbed climate model experiments, we provide evidence that atmospheric teleconnections associated with the Atlantic multidecadal variability (AMV) can drive low-frequency Arctic sea ice fluctuations. Even without AMV-related changes in ocean heat transport, AMV-like surface temperature anomalies lead to adjustments in atmospheric circulation patterns that produce similar Arctic sea ice changes in three different climate models. Positive AMV anomalies induce a decrease in the frequency of winter polar anticyclones, which is reflected both in the sea level pressure as a weakening of the Beaufort Sea high and in the surface temperature as warm anomalies in response to increased low-cloud cover. Positive AMV anomalies are also shown to favor an increased prevalence of an Arctic dipole–like sea level pressure pattern in late winter/early spring. The resulting anomalous winds drive anomalous ice motions (dynamic effect). Combined with the reduced winter sea ice formation (thermodynamic effect), the Arctic sea ice becomes thinner, younger, and more prone to melt in summer. Following a phase shift to positive AMV, the resulting atmospheric teleconnections can lead to a decadal ice thinning trend in the Arctic Ocean on the order of 8%–16% of the reconstructed long-term trend, and a decadal trend (decline) in September Arctic sea ice area of up to 21% of the observed long-term trend.

Open access
Sergey Skachko, Jean-Michel Brankart, Frédéric Castruccio, Pierre Brasseur, and Jacques Verron

Abstract

Bulk formulations parameterizing turbulent air–sea fluxes remain among the main sources of error in present-day ocean models. The objective of this study is to investigate the possibility of estimating the turbulent bulk exchange coefficients using sequential data assimilation. It is expected that existing ocean assimilation systems can use this method to improve the air–sea fluxes and produce more realistic forecasts of the thermohaline characteristics of the mixed layer. The method involves augmenting the control vector of the assimilation scheme using the model parameters that are to be controlled. The focus of this research is on estimating two bulk coefficients that drive the sensible heat flux, the latent heat flux, and the evaporation flux of a global ocean model, by assimilating temperature and salinity profiles using horizontal and temporal samplings similar to those to be provided by the Argo float system. The results of twin experiments show that the method is able to correctly estimate the large-scale variations in the bulk parameters, leading to a significant improvement in the atmospheric forcing applied to the ocean model.

Full access
Yohan Ruprich-Robert, Rym Msadek, Frederic Castruccio, Stephen Yeager, Tom Delworth, and Gokhan Danabasoglu

Abstract

The climate impacts of the observed Atlantic multidecadal variability (AMV) are investigated using the GFDL CM2.1 and the NCAR CESM1 coupled climate models. The model North Atlantic sea surface temperatures are restored to fixed anomalies corresponding to an estimate of the internally driven component of the observed AMV. Both models show that during boreal summer the AMV alters the Walker circulation and generates precipitation anomalies over the whole tropical belt. A warm phase of the AMV yields reduced precipitation over the western United States, drier conditions over the Mediterranean basin, and wetter conditions over northern Europe. During boreal winter, the AMV modulates by a factor of about 2 the frequency of occurrence of El Niño and La Niña events. This response is associated with anomalies over the Pacific that project onto the interdecadal Pacific oscillation pattern (i.e., Pacific decadal oscillation–like anomalies in the Northern Hemisphere and a symmetrical pattern in the Southern Hemisphere). This winter response is a lagged adjustment of the Pacific Ocean to the AMV forcing in summer. Most of the simulated global-scale impacts are driven by the tropical part of the AMV, except for the winter North Atlantic Oscillation–like response over the North Atlantic–European region, which is driven by both the subpolar and tropical parts of the AMV. The teleconnections between the Pacific and Atlantic basins alter the direct North Atlantic local response to the AMV, which highlights the importance of using a global coupled framework to investigate the climate impacts of the AMV. The similarity of the two model responses gives confidence that impacts described in this paper are robust.

Full access