Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Fu-Lung Chang x
  • Refine by Access: All Content x
Clear All Modify Search
Fu-Lung Chang and Zhanqing Li

Abstract

The frequent occurrence of high cirrus overlapping low water cloud poses a major challenge in retrieving their optical properties from spaceborne sensors. This paper presents a novel retrieval method that takes full advantage of the satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The main objectives are identification of overlapped high cirrus and low water clouds and determination of their individual optical depths, top heights, and emissivities. The overlapped high cloud top is determined from the MODIS CO2-slicing retrieval and the underlying low cloud top is determined from the neighboring MODIS pixels that are identified as single-layer low clouds. The algorithm applies a dual-layer cloud radiative transfer model using initial cloud properties derived from the MODIS CO2-slicing channels and the visible (0.65 μm) and infrared (11 μm) window channels. An automated iterative procedure follows by adjusting the high cirrus and low water cloud optical depths until computed radiances from the dual-layer model match with observed radiances from both the visible and infrared channels. The algorithm is valid for both single-layer and dual-layer clouds with the cirrus optical depth <∼4 (emissivity <∼0.85). For more than two-layer clouds, its validity depends on the thickness of the upper-layer cloud. A preliminary validation is conducted by comparing against ground-based active remote sensing data. Pixel-by-pixel retrievals and error analyses are presented. It is demonstrated that retrievals based on a single-layer assumption can result in systematic biases in the retrieved cloud top and optical properties for overlapped clouds. Such biases can be removed or lessened considerably by applying the new algorithm.

Full access
Fu-Lung Chang and Zhanqing Li

Abstract

Cloud overlapping has been a major issue in climate studies owing to a lack of reliable information available over both oceans and land. This study presents the first near-global retrieval and analysis of single-layer and overlapped cloud vertical structures and their optical properties retrieved by applying a new method to the Moderate Resolution Imaging Spectroradiometer (MODIS) data. Taking full advantage of the MODIS multiple channels, the method can differentiate cirrus overlapping lower water clouds from single-layer clouds. Based on newly retrieved cloud products using daytime Terra/MODIS 5-km overcast measurements sampled in January, April, July, and October 2001, global statistics of the frequency of occurrence, cloud-top pressure/temperature (Pc/Tc), visible optical depth (τ VIS), and infrared emissivity (ε) are presented and discussed. Of all overcast scenes identified over land (ocean), the MODIS data show 61% (52%) high clouds (Pc < 500 hPa), 39% (48%) lower clouds (Pc > 500 hPa), and an extremely low occurrence (<4%) of Pc between 500 and 600 hPa. A distinct bimodal distribution of Pc is found and peaks at ∼275 and ∼725 hPa for high and low clouds, thus leaving a minimum in cloud in the middle troposphere. Out of the 61% (52%) of high clouds identified by MODIS, retrievals reveal that 41% (35%) are thin cirrus clouds (ε < 0.85 and Pc < 500 hPa) and the remaining 20% (17%) are thick high clouds (ε ≥ 0.85). Out of the 41% (35%) of thin cirrus, 29% (27%) are found to overlap with lower water clouds and 12% (8%) are single-layer cirrus. Total low-cloud amount (single-layer plus overlapped) out of all overcast scenes is thus 68% (39% + 29%) over land and 75% (48% + 27%) over ocean, which is greater than the cloud amounts reported by the MODIS and the International Satellite Cloud Climatology Project (ISCCP). Both retrieved overlapping and nonoverlapping cirrus clouds show similar mean τ VIS of ∼1.5 and mean ε of ∼0.5. The optical properties of single-layer cirrus and single-layer water clouds agree well with the MODIS standard retrievals. Because the MODIS retrievals do not differentiate between cirrus and lower water clouds in overlap situations, large discrepancies are found for emissivity, cloud-top height, and optical depth for high cirrus overlapping lower water clouds.

Full access
Fu-Lung Chang and James A. Coakley Jr.

Abstract

Studies using International Satellite Cloud Climatology Project (ISCCP) data have reported decreases in cloud optical depth with increasing temperature, thereby suggesting a positive feedback in cloud optical depth as climate warms. The negative cloud optical depth and temperature relationships are questioned because ISCCP employs threshold assumptions to identify cloudy pixels that have included partly cloudy pixels. This study applies the spatial coherence technique to one month of Advanced Very High Resolution Radiometer (AVHRR) data over the Pacific Ocean to differentiate overcast pixels from the partly cloudy pixels and to reexamine the cloud optical depth–temperature relationships. For low-level marine stratus clouds studied here, retrievals from partly cloudy pixels showed 30%–50% smaller optical depths, 1°–4°C higher cloud temperatures, and slightly larger droplet effective radii, when they were compared to retrievals from the overcast pixels. Despite these biases, retrievals for the overcast and partly cloudy pixels show similar negative cloud optical depth–temperature relationships and their magnitudes agree with the ISCCP results for the midlatitude and subtropical regions. There were slightly negative droplet effective radius–temperature relationships, and considerable positive cloud liquid water content–temperature relationships indicated by aircraft measurements. However, cloud thickness decreases appear to be the main reason why cloud optical depth decreases with increasing temperature. Overall, cloud thickness thinning may explain why similar negative cloud optical depth–temperature relationships are found in both overcast and partly cloudy pixels. In addition, comparing the cloud-top temperature to the air temperature at 740 hPa indicates that cloud-top height generally rises with warming. This suggests that the cloud thinning is mainly due to the ascending of cloud base. The results presented in this study are confined to the midlatitude and subtropical Pacific and may not be applicable to the Tropics or other regions.

Full access
Fu-Lung Chang, Zhanqing Li, and Steven A. Ackerman

Abstract

This study examines the consistency and inconsistency in shortwave (SW) top-of-atmosphere (TOA) reflectances and albedos obtained from satellite measurements of the Earth Radiation Budget Experiment (ERBE) and radiation modeling based on cloud properties retrieved from the Advanced Very High Resolution Radiometer (AVHRR). The examination focuses on completely overcast scenes covered by low-level, single-layered, maritime stratus with uniform cloud-top heights as determined from AVHRR measurements at near nadir. A radiation model was then applied to the retrieved cloud optical depths, droplet effective radii, and top temperatures to compute the SW TOA reflectances and albedos that are compared with coincident ERBE observations. ERBE-observed and AVHRR-based modeled reflectances show excellent agreement in terms of both trend and magnitude, but the two albedos exhibit significant differences that have a strong dependence on cloud optical properties and solar zenith angle (SZA). To unravel the differences, two major factors, that is, scene identification and angular dependence model (ADM), involved in converting reflectance to albedo are examined. It is found that the dependence is mainly caused by the use of a single ERBE–ADM for all overcast scenes, regardless of cloud optical properties. The mean difference in SW TOA flux is about 4–12 W m−2, depending on SZA, but individual differences may reach up to 40–50 W m−2 for persistent large or small cloud optical depths. Nearly all of the uniform low-level overcast scenes as determined by AVHRR are identified as mostly cloudy by ERBE, but the misidentification does not have any adverse effect on the albedo differences. In fact, replacing the ERBE mostly cloudy ADM with the overcast ADM exacerbates the albedo comparisons. The mean fluxes obtained with the two ADMs differ by ∼8 W m−2 at SZA ≈ 33° and by 30 W m−2 at SZA ≈ 60°.

Full access
Fu-Lung Chang, Zhanqing Li, and Alexander P. Trishchenko

Abstract

An angular dependence model (ADM) describes the anisotropy in the reflectance field. ADMs are a key element in determining the top-of-the-atmosphere (TOA) albedos and radiative fluxes. This study utilizes 1-yr satellite data from the Scanner for Radiation Budget (ScaRaB) for overcast scenes to examine the variation of ADMs with cloud properties. Using ScaRaB shortwave (SW) overcast radiance measurements, an SW mean overcast ADM, similar to the Earth Radiation Budget Experiment (ERBE) ADM, was generated. Differences between the ScaRaB and ERBE overcast ADMs lead to biases of ∼0.01–0.04 in mean albedos inferred from specific angular bins. The largest biases are in the backward scattering direction. Overcast ADMs for the visible (VIS) wavelength were also generated using ScaRaB VIS measurements. They are very similar to, but a little smaller at large viewing angles and a little larger at nadir, than the SW overcast ADMs. To evaluate the effect of cloud properties on ADMs, ScaRaB overcast observations were further classified into thin, thick, warm, and cold cloud categories to generate four subsets of ADMs. The resulting ADMs for thin and thick clouds show opposite trends and deviate significantly from the overall mean ADM by more than 10%. Deviations from the mean ADM were also noted for the ADMs developed for warm water clouds and cold ice clouds. These deviations were attributed to the different scattering phase functions of water and ice particles and were compared with results from model simulations. Use of a single mean overcast ADM results in albedo biases of 0.01–0.04, relative to the use of specific ADMs for particular cloud types. The biases reduced to ∼0.005 when averaged over all cloud types and viewing geometry.

Full access
Ruiyue Chen, Fu-Lung Chang, Zhanqing Li, Ralph Ferraro, and Fuzhong Weng

Abstract

Cloud droplet effective radius (DER) and liquid water path (LWP) are two key parameters for the quantitative assessment of cloud effects on the exchange of energy and water. Chang and Li presented an algorithm using multichannel measurements made at 3.7, 2.1, and 1.6 μm to retrieve a cloud DER vertical profile for improved cloud LWP estimation. This study applies the multichannel algorithm to the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) data on the Aqua satellite, which also carries the Advanced Microwave Scanning Radiometer (AMSR-E) for measuring cloud LWP and precipitation. By analyzing one day of coincident MODIS and AMSR-E observations over the tropical oceans between 40°S and 40°N for overcast warm clouds (>273 K) having optical depths between 3.6 and 23, the effects of DER vertical variation on the MODIS-derived LWP are reported. It is shown that the LWP tends to be overestimated if the DER increases with height within the cloud and underestimated if the DER decreases with height within the cloud. Despite the uncertainties in both MODIS and AMSR-E retrievals, the result shows that accounting for the DER vertical variation reduces the mean biases and root-mean-square errors between the MODIS- and AMSR-E–derived LWPs. Besides, the manner in which the DER changes with height has the potential for differentiating precipitative and nonprecipitative warm clouds. For precipitating clouds, the DER at the cloud top is substantially smaller than the DER at the cloud base. For nonprecipitating clouds, however, the DER differences between the cloud top and the cloud base are much less.

Full access