Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: G. A. Wick x
  • All content x
Clear All Modify Search
M. J. Suarez, W. J. Emery, and G. A. Wick

Abstract

A new multichannel infrared sea truth radiometer has been designed and built to improve validation of satellite-determined sea surface temperature. Horizontal grid polarized filters installed on the shortwave channels are very effective in reducing reflected solar radiation and in improving the noise characteristics. The system uses a continuous (every other cycle) seawater calibration technique. An analysis of the data from its first deployment is presented and recommendations are made for further improving the experimental method.

Full access
W. J. Emery, Sandra Castro, G. A. Wick, Peter Schluessel, and Craig Donlon

Sea surface temperature (SST) is a critical quantity in the study of both the ocean and the atmosphere as it is directly related to and often dictates the exchanges of heat, momentum, and gases between the ocean and the atmosphere. As the most widely observed variable in oceanography, SST is used in many different studies of the ocean and its coupling with the atmosphere. The history of this measurement and how this history led to today's practice of computing SST by regressing satellite infrared measurements against in situ SST observations made by drifting/moored buoys and ships are examined. The fundamental differences between satellite and in situ SST are discussed and recommendations are made for how both data streams should be handled. A comprehensive in situ validation/calibration plan is proposed for the satellite SSTs and consequences of the suggested measurements are discussed with respect to the role of SST as an integral part of the fluxes between the ocean and the atmosphere.

Full access
F. M. Ralph, S. F. Iacobellis, P. J. Neiman, J. M. Cordeira, J. R. Spackman, D. E. Waliser, G. A. Wick, A. B. White, and C. Fairall

Abstract

Aircraft dropsonde observations provide the most comprehensive measurements to date of horizontal water vapor transport in atmospheric rivers (ARs). The CalWater experiment recently more than tripled the number of ARs probed with the required measurements. This study uses vertical profiles of water vapor, wind, and pressure obtained from 304 dropsondes across 21 ARs. On average, total water vapor transport (TIVT) in an AR was 4.7 × 108 ± 2 × 108 kg s−1. This magnitude is 2.6 times larger than the average discharge of liquid water from the Amazon River. The mean AR width was 890 ± 270 km. Subtropical ARs contained larger integrated water vapor (IWV) but weaker winds than midlatitude ARs, although average TIVTs were nearly the same. Mean TIVTs calculated by defining the lateral “edges” of ARs using an IVT threshold versus an IWV threshold produced results that differed by less than 10% across all cases, but did vary between the midlatitudes and subtropical regions.

Full access
J. A. Curry, A. Bentamy, M. A. Bourassa, D. Bourras, E. F. Bradley, M. Brunke, S. Castro, S. H. Chou, C. A. Clayson, W. J. Emery, L. Eymard, C. W. Fairall, M. Kubota, B. Lin, W. Perrie, R. A. Reeder, I. A. Renfrew, W. B. Rossow, J. Schulz, S. R. Smith, P. J. Webster, G. A. Wick, and X. Zeng

High-resolution surface fluxes over the global ocean are needed to evaluate coupled atmosphere–ocean models and weather forecasting models, provide surface forcing for ocean models, understand the regional and temporal variations of the exchange of heat between the atmosphere and ocean, and provide a large-scale context for field experiments. Under the auspices of the World Climate Research Programme (WCRP) Global Energy and Water Cycle Experiment (GEWEX) Radiation Panel, the SEAFLUX Project has been initiated to investigate producing a high-resolution satellite-based dataset of surface turbulent fluxes over the global oceans to complement the existing products for surface radiation fluxes and precipitation. The SEAFLUX Project includes the following elements: a library of in situ data, with collocated satellite data to be used in the evaluation and improvement of global flux products; organized intercomparison projects, to evaluate and improve bulk flux models and determination from the satellite of the input parameters; and coordinated evaluation of the flux products in the context of applications, such as forcing ocean models and evaluation of coupled atmosphere–ocean models. The objective of this paper is to present an overview of the status of global ocean surface flux products, the methodology being used by SEAFLUX, and the prospects for improvement of satellite-derived flux products.

Full access
Gary A. Wick, Jason P. Dunion, Peter G. Black, John R. Walker, Ryan D. Torn, Andrew C. Kren, Altug Aksoy, Hui Christophersen, Lidia Cucurull, Brittany Dahl, Jason M. English, Kate Friedman, Tanya R. Peevey, Kathryn Sellwood, Jason A. Sippel, Vijay Tallapragada, James Taylor, Hongli Wang, Robbie E. Hood, and Philip Hall

Abstract

The National Oceanic and Atmospheric Administration’s (NOAA) Sensing Hazards with Operational Unmanned Technology (SHOUT) project evaluated the ability of observations from high-altitude unmanned aircraft to improve forecasts of high-impact weather events like tropical cyclones or mitigate potential degradation of forecasts in the event of a future gap in satellite coverage. During three field campaigns conducted in 2015 and 2016, the National Aeronautics and Space Administration (NASA) Global Hawk, instrumented with GPS dropwindsondes and remote sensors, flew 15 missions sampling 6 tropical cyclones and 3 winter storms. Missions were designed using novel techniques to target sampling regions where high model forecast uncertainty and a high sensitivity to additional observations existed. Data from the flights were examined in real time by operational forecasters, assimilated in operational weather forecast models, and applied postmission to a broad suite of data impact studies. Results from the analyses spanning different models and assimilation schemes, though limited in number, consistently demonstrate the potential for a positive forecast impact from the observations, both with and without a gap in satellite coverage. The analyses with the then-operational modeling system demonstrated large forecast improvements near 15% for tropical cyclone track at a 72-h lead time when the observations were added to the otherwise complete observing system. While future decisions regarding use of the Global Hawk platform will include budgetary considerations, and more observations are required to enhance statistical significance, the scientific results support the potential merit of the observations. This article provides an overview of the missions flown, observational approach, and highlights from the completed and ongoing data impact studies.

Full access
C. Donlon, I. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. Gentemann, D. May, P. LeBorgne, J. Piollé, I. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. Wick, B. Emery, P. Minnett, R. Evans, D. Llewellyn-Jones, C. Mutlow, R. W. Reynolds, H. Kawamura, and N. Rayner

A new generation of integrated sea surface temperature (SST) data products are being provided by the Global Ocean Data Assimilation Experiment (GODAE) High-Resolution SST Pilot Project (GHRSST-PP). These combine in near-real time various SST data products from several different satellite sensors and in situ observations and maintain the fine spatial and temporal resolution needed by SST inputs to operational models. The practical realization of such an approach is complicated by the characteristic differences that exist between measurements of SST obtained from subsurface in-water sensors, and satellite microwave and satellite infrared radiometer systems. Furthermore, diurnal variability of SST within a 24-h period, manifested as both warm-layer and cool-skin deviations, introduces additional uncertainty for direct intercomparison between data sources and the implementation of data-merging strategies. The GHRSST-PP has developed and now operates an internationally distributed system that provides operational feeds of regional and global coverage high-resolution SST data products (better than 10 km and ~6 h). A suite of online satellite SST diagnostic systems are also available within the project. All GHRSST-PP products have a standard format, include uncertainty estimates for each measurement, and are served to the international user community free of charge through a variety of data transport mechanisms and access points. They are being used for a number of operational applications. The approach will also be extended back to 1981 by a dedicated reanalysis project. This paper provides a summary overview of the GHRSST-PP structure, activities, and data products. For a complete discussion, and access to data products and services see the information online at www.ghrsst-pp.org.

Full access
Randall M. Dole, J. Ryan Spackman, Matthew Newman, Gilbert P. Compo, Catherine A. Smith, Leslie M. Hartten, Joseph J. Barsugli, Robert S. Webb, Martin P. Hoerling, Robert Cifelli, Klaus Wolter, Christopher D. Barnet, Maria Gehne, Ronald Gelaro, George N. Kiladis, Scott Abbott, Elena Akish, John Albers, John M. Brown, Christopher J. Cox, Lisa Darby, Gijs de Boer, Barbara DeLuisi, Juliana Dias, Jason Dunion, Jon Eischeid, Christopher Fairall, Antonia Gambacorta, Brian K. Gorton, Andrew Hoell, Janet Intrieri, Darren Jackson, Paul E. Johnston, Richard Lataitis, Kelly M. Mahoney, Katherine McCaffrey, H. Alex McColl, Michael J. Mueller, Donald Murray, Paul J. Neiman, William Otto, Ola Persson, Xiao-Wei Quan, Imtiaz Rangwala, Andrea J. Ray, David Reynolds, Emily Riley Dellaripa, Karen Rosenlof, Naoko Sakaeda, Prashant D. Sardeshmukh, Laura C. Slivinski, Lesley Smith, Amy Solomon, Dustin Swales, Stefan Tulich, Allen White, Gary Wick, Matthew G. Winterkorn, Daniel E. Wolfe, and Robert Zamora

Abstract

Forecasts by mid-2015 for a strong El Niño during winter 2015/16 presented an exceptional scientific opportunity to accelerate advances in understanding and predictions of an extreme climate event and its impacts while the event was ongoing. Seizing this opportunity, the National Oceanic and Atmospheric Administration (NOAA) initiated an El Niño Rapid Response (ENRR), conducting the first field campaign to obtain intensive atmospheric observations over the tropical Pacific during El Niño.

The overarching ENRR goal was to determine the atmospheric response to El Niño and the implications for predicting extratropical storms and U.S. West Coast rainfall. The field campaign observations extended from the central tropical Pacific to the West Coast, with a primary focus on the initial tropical atmospheric response that links El Niño to its global impacts. NOAA deployed its Gulfstream-IV (G-IV) aircraft to obtain observations around organized tropical convection and poleward convective outflow near the heart of El Niño. Additional tropical Pacific observations were obtained by radiosondes launched from Kiritimati , Kiribati, and the NOAA ship Ronald H. Brown, and in the eastern North Pacific by the National Aeronautics and Space Administration (NASA) Global Hawk unmanned aerial system. These observations were all transmitted in real time for use in operational prediction models. An X-band radar installed in Santa Clara, California, helped characterize precipitation distributions. This suite supported an end-to-end capability extending from tropical Pacific processes to West Coast impacts. The ENRR observations were used during the event in operational predictions. They now provide an unprecedented dataset for further research to improve understanding and predictions of El Niño and its impacts.

Open access