Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: G. Balsamo x
  • Refine by Access: All Content x
Clear All Modify Search
G. Balsamo, J-F. Mahfouf, S. Bélair, and G. Deblonde

Abstract

A Canadian Land Data Assimilation System (CaLDAS) for the analysis of land surface prognostic variables is designed and implemented at the Meteorological Service of Canada for the initialization of numerical weather prediction and climate models. The assimilation of different data sources for the production of daily soil moisture and temperature analyses is investigated in a set of observing system simulation experiments over North America. A simplified variational technique is adapted to accommodate different observation types at their appropriate time in a 24-h time window. The screen-level observations of temperature and relative humidity, from conventional synoptic surface observations (SYNOP)/aviation routine weather report (METAR)/surface aviation observation (SA) reports, are considered together with presently available satellite observations provided by the Aqua satellite (microwave C-band), Geostationary Operational Environmental Satellite (GOES) [infrared (IR)], and observations available in the future by the Soil Moisture and Ocean Salinity (SMOS) satellite mission (microwave L-band). The aim of these experiments is to assess the information content brought by each observation type in the land surface analysis. The observation systems are simulated according to their spatial coverage, temporal availability, and nominal or expected errors. The results show that the observable with the largest dynamical response to perturbations of the control variable carries the greatest information content into the analysis. The observational error and the observation frequency counterbalance this feature in the analysis.

If one considers a single observation both for soil moisture and soil temperature analysis, then satellite measurements (L-band, C-band, and IR in decreasing order of importance) are the primary source of information. When observation availability is considered and the highest temporal frequency of screen-level observations is used (1 h), a large amount of information is extracted from SYNOP-like reports. The screen-level observations are shown to provide valuable soil moisture information mainly during the daytime, while during nighttime these observations (and particularly screen-level temperature) are mostly useful for the soil temperature analysis. The results are presented with perspectives for future operational developments and preliminary assimilation experiments are performed with hourly screen-level observations.

Full access
G. Balsamo, J-F. Mahfouf, S. Bélair, and G. Deblonde

Abstract

The aim of this study is to test a land data assimilation prototype for the production of a global daily root-zone soil moisture analysis. This system can assimilate microwave L-band satellite observations such as those from the future Hydros NASA mission. The experiments are considered in the framework of the Interaction Soil Biosphere Atmosphere (ISBA) land surface scheme used operationally at the Meteorological Service of Canada for regional and global weather forecasting. A land surface reference state is obtained after a 1-yr global land surface simulation, forced by near-surface atmospheric fields provided by the Global Soil Wetness Project, second initiative (GSWP-2). A radiative transfer model is applied to simulate the microwave L-band passive emission from the surface. The generated brightness temperature observations are distributed in space and time according to the satellite trajectory specified by the Hydros mission. The impact of uncertainties related to the satellite observations, the land surface, and microwave emission models is investigated. A global daily root-zone soil moisture analysis is produced with a simplified variational scheme. The applicability and performance of the system are evaluated in a data assimilation cycle in which the L-band simulated observations, generated from a land surface reference state, are assimilated to correct a prescribed initial root-zone soil moisture error. The analysis convergence is satisfactory in both summer and winter cases. In summer, when considering a 3-K observation error, 90% of land surface converges toward the reference state with a soil moisture accuracy better than 0.04 m3 m−3 after a 4-week assimilation cycle. A 5-K observation error introduces 1-week delay in the convergence. A study of the analysis error statistics is performed for understanding the properties of the system. Special features associated with the interactions between soil water and soil ice, and the presence of soil moisture vertical gradients, are examined.

Full access
C. Albergel, P. de Rosnay, G. Balsamo, L. Isaksen, and J. Muñoz-Sabater

Abstract

In situ soil moisture from 117 stations across the world and under different biome and climate conditions are used to evaluate two soil moisture products from the European Centre for Medium-Range Weather Forecasts (ECMWF)—namely, the operational analysis and the interim reanalysis [ECMWF Re-Analysis Interim (ERA-Interim)]. ECMWF’s operational Integrated Forecasting System (IFS) is based on a continuous effort to improve the analysis and modeling systems, resulting in frequent updates (a few times a year). The ERA-Interim reanalysis is produced by a fixed IFS version (for the main component of the atmospheric model and data assimilation). It has the advantage of being consistent over the whole period from 1979 onward and by design, reanalysis products are more suitable than their operational counterparts for use in climate studies. Although the two analyses show good skills in capturing surface soil moisture variability, they tend to overestimate soil moisture, particularly for dry land. Over the 2008–10 period, averaged statistical scores (correlation, bias, and root-mean-square difference) are 0.70, −0.081 m3 m−3, and 0.113 m3 m−3 for the operational product and 0.63, −0.079 m3 m−3, and 0.121 m3 m−3 for ERA-Interim. Compared to the scheme used in ERA-Interim, the current model used in the IFS has an improved match to soil moisture that is attributed to recent changes in the IFS. Indeed, major upgrades recently implemented in the operational land surface analysis and modeling system improve the surface and the root-zone soil moisture analyses.

Full access
D. P. Dee, M. Balmaseda, G. Balsamo, R. Engelen, A. J. Simmons, and J.-N. Thépaut

This article reviews past and current reanalysis activities at the European Centre for Medium-Range Weather Forecasts (ECMWF) and describes plans for developing future reanalyses of the coupled climate system. Global reanalyses of the atmosphere, ocean, land surface, and atmospheric composition have played an important role in improving and extending the capabilities of ECMWF's operational forecasting systems. The potential role of reanalysis in support of climate change services in Europe is driving several interesting new developments. These include the production of reanalyses that span a century or more and the implementation of a coupled data assimilation capability suitable for climate reanalysis. Although based largely on ECMWF's achievements, capabilities, and plans, the article serves more generally to provide a review of pertinent issues affecting past and current reanalyses and a discussion of the major challenges in moving to more fully coupled systems.

Full access
Y. Malbéteau, O. Merlin, G. Balsamo, S. Er-Raki, S. Khabba, J. P. Walker, and L. Jarlan

Abstract

High spatial and temporal resolution surface soil moisture is required for most hydrological and agricultural applications. The recently developed Disaggregation based on Physical and Theoretical Scale Change (DisPATCh) algorithm provides 1-km-resolution surface soil moisture by downscaling the 40-km Soil Moisture Ocean Salinity (SMOS) soil moisture using Moderate Resolution Imaging Spectroradiometer (MODIS) data. However, the temporal resolution of DisPATCh data is constrained by the temporal resolution of SMOS (a global coverage every 3 days) and further limited by gaps in MODIS images due to cloud cover. This paper proposes an approach to overcome these limitations based on the assimilation of the 1-km-resolution DisPATCh data into a simple dynamic soil model forced by (inaccurate) precipitation data. The performance of the approach was assessed using ground measurements of surface soil moisture in the Yanco area in Australia and the Tensift-Haouz region in Morocco during 2014. It was found that the analyzed daily 1-km-resolution surface soil moisture compared slightly better to in situ data for all sites than the original disaggregated soil moisture products. Over the entire year, assimilation increased the correlation coefficient between estimated soil moisture and ground measurements from 0.53 to 0.70, whereas the mean unbiased RMSE (ubRMSE) slightly decreased from 0.07 to 0.06 m3 m−3 compared to the open-loop force–restore model. The proposed assimilation scheme has significant potential for large-scale applications over semiarid areas, since the method is based on data available at the global scale together with a parsimonious land surface model.

Full access
C. Albergel, W. Dorigo, R. H. Reichle, G. Balsamo, P. de Rosnay, J. Muñoz-Sabater, L. Isaksen, R. de Jeu, and W. Wagner

Abstract

In situ soil moisture measurements from 2007 to 2010 for 196 stations from five networks across the world (United States, France, Spain, China, and Australia) are used to determine the reliability of three soil moisture products: (i) a revised version of the ECMWF Interim Re-Analysis (ERA-Interim; ERA-Land); (ii) a revised version of the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis from NASA (MERRA-Land); and (iii) a new, microwave-based multisatellite surface soil moisture dataset (SM-MW). Evaluation of the time series and anomalies from a moving monthly mean shows a good performance of the three products in capturing the annual cycle of surface soil moisture and its short-term variability. On average, correlations (95% confidence interval) are 0.66 (±0.038), 0.69 (±0.038), and 0.60 (±0.061) for ERA-Land, MERRA-Land, and SM-MW. The two reanalysis products also capture the root-zone soil moisture well; on average, correlations are 0.68 (±0.035) and 0.73 (±0.032) for ERA-Land and MERRA-Land, respectively. Global trends analysis for 1988–2010 suggests a decrease of surface soil moisture contents (72% of significant trends are negative, i.e., drying) for ERA-Land and an increase in surface soil moisture (59% of significant trends are positive, i.e., wetting) for MERRA-Land. As the spatial extent and fractions of significant trends in both products differ, the trend reflected in the majority of grid points within different climate classes was investigated and compared to that of SM-MW. The latter is dominated by negative significant trends (73.2%) and is more in line with ERA-Land. For both reanalysis products, trends for the upper layer of soil are confirmed in the root-zone soil moisture (first meter of soil).

Full access
Paul A. Dirmeyer, Jiexia Wu, Holly E. Norton, Wouter A. Dorigo, Steven M. Quiring, Trenton W. Ford, Joseph A. Santanello Jr., Michael G. Bosilovich, Michael B. Ek, Randal D. Koster, Gianpaolo Balsamo, and David M. Lawrence

Abstract

Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those it is found that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely because of differences in instrumentation, calibration, and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat-dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory), and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but they poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses outperform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration, or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison.

Full access
Paul A. Dirmeyer, Liang Chen, Jiexia Wu, Chul-Su Shin, Bohua Huang, Benjamin A. Cash, Michael G. Bosilovich, Sarith Mahanama, Randal D. Koster, Joseph A. Santanello, Michael B. Ek, Gianpaolo Balsamo, Emanuel Dutra, and David M. Lawrence

Abstract

This study compares four model systems in three configurations (LSM, LSM + GCM, and reanalysis) with global flux tower observations to validate states, surface fluxes, and coupling indices between land and atmosphere. Models clearly underrepresent the feedback of surface fluxes on boundary layer properties (the atmospheric leg of land–atmosphere coupling) and may overrepresent the connection between soil moisture and surface fluxes (the terrestrial leg). Models generally underrepresent spatial and temporal variability relative to observations, which is at least partially an artifact of the differences in spatial scale between model grid boxes and flux tower footprints. All models bias high in near-surface humidity and downward shortwave radiation, struggle to represent precipitation accurately, and show serious problems in reproducing surface albedos. These errors create challenges for models to partition surface energy properly, and errors are traceable through the surface energy and water cycles. The spatial distribution of the amplitude and phase of annual cycles (first harmonic) are generally well reproduced, but the biases in means tend to reflect in these amplitudes. Interannual variability is also a challenge for models to reproduce. Although the models validate better against Bowen-ratio-corrected surface flux observations, which allow for closure of surface energy balances at flux tower sites, it is not clear whether the corrected fluxes are more representative of actual fluxes. The analysis illuminates targets for coupled land–atmosphere model development, as well as the value of long-term globally distributed observational monitoring.

Open access
M. J. Best, G. Abramowitz, H. R. Johnson, A. J. Pitman, G. Balsamo, A. Boone, M. Cuntz, B. Decharme, P. A. Dirmeyer, J. Dong, M. Ek, Z. Guo, V. Haverd, B. J. J. van den Hurk, G. S. Nearing, B. Pak, C. Peters-Lidard, J. A. Santanello Jr., L. Stevens, and N. Vuichard

Abstract

The Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model Benchmarking Evaluation Project (PLUMBER) was designed to be a land surface model (LSM) benchmarking intercomparison. Unlike the traditional methods of LSM evaluation or comparison, benchmarking uses a fundamentally different approach in that it sets expectations of performance in a range of metrics a priori—before model simulations are performed. This can lead to very different conclusions about LSM performance. For this study, both simple physically based models and empirical relationships were used as the benchmarks. Simulations were performed with 13 LSMs using atmospheric forcing for 20 sites, and then model performance relative to these benchmarks was examined. Results show that even for commonly used statistical metrics, the LSMs’ performance varies considerably when compared to the different benchmarks. All models outperform the simple physically based benchmarks, but for sensible heat flux the LSMs are themselves outperformed by an out-of-sample linear regression against downward shortwave radiation. While moisture information is clearly central to latent heat flux prediction, the LSMs are still outperformed by a three-variable nonlinear regression that uses instantaneous atmospheric humidity and temperature in addition to downward shortwave radiation. These results highlight the limitations of the prevailing paradigm of LSM evaluation that simply compares an LSM to observations and to other LSMs without a mechanism to objectively quantify the expectations of performance. The authors conclude that their results challenge the conceptual view of energy partitioning at the land surface.

Full access
R. D. Koster, S. P. P. Mahanama, T. J. Yamada, Gianpaolo Balsamo, A. A. Berg, M. Boisserie, P. A. Dirmeyer, F. J. Doblas-Reyes, G. Drewitt, C. T. Gordon, Z. Guo, J.-H. Jeong, W.-S. Lee, Z. Li, L. Luo, S. Malyshev, W. J. Merryfield, S. I. Seneviratne, T. Stanelle, B. J. J. M. van den Hurk, F. Vitart, and E. F. Wood

Abstract

The second phase of the Global Land–Atmosphere Coupling Experiment (GLACE-2) is a multi-institutional numerical modeling experiment focused on quantifying, for boreal summer, the subseasonal (out to two months) forecast skill for precipitation and air temperature that can be derived from the realistic initialization of land surface states, notably soil moisture. An overview of the experiment and model behavior at the global scale is described here, along with a determination and characterization of multimodel “consensus” skill. The models show modest but significant skill in predicting air temperatures, especially where the rain gauge network is dense. Given that precipitation is the chief driver of soil moisture, and thereby assuming that rain gauge density is a reasonable proxy for the adequacy of the observational network contributing to soil moisture initialization, this result indeed highlights the potential contribution of enhanced observations to prediction. Land-derived precipitation forecast skill is much weaker than that for air temperature. The skill for predicting air temperature, and to some extent precipitation, increases with the magnitude of the initial soil moisture anomaly. GLACE-2 results are examined further to provide insight into the asymmetric impacts of wet and dry soil moisture initialization on skill.

Full access