Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: G. S. Diskin x
  • All content x
Clear All Modify Search
J. M. Livingston, B. Schmid, P. B. Russell, J. R. Podolske, J. Redemann, and G. S. Diskin

Abstract

In January–February 2003, the 14-channel NASA Ames airborne tracking sun photometer (AATS) and the NASA Langley/Ames diode laser hygrometer (DLH) were flown on the NASA DC-8 aircraft. The AATS measured column water vapor on the aircraft-to-sun path, while the DLH measured local water vapor in the free stream between the aircraft fuselage and an outboard engine cowling. The AATS and DLH measurements have been compared for two DC-8 vertical profiles by differentiating the AATS column measurement and/or integrating the DLH local measurement over the altitude range of each profile (7.7–10 km and 1.1–12.5 km). These comparisons extend, for the first time, tests of AATS water vapor retrievals to altitudes >∼6 km and column contents <0.1 g cm−2. To the authors’ knowledge, this is the first time suborbital spectroscopic water vapor measurements using the 940-nm band have been tested in conditions so high and dry. Values of layer water vapor (LWV) calculated from the AATS and DLH measurements are highly correlated for each profile. The composite dataset yields r2 0.998, rms difference 7.7%, and bias (AATS minus DLH) 1.0%. For water vapor densities AATS and DLH had r2 0.968, rms difference 27.6%, and bias (AATS minus DLH) −4.2%. These results for water vapor density compare favorably with previous comparisons of AATS water vapor to in situ results for altitudes <∼6 km, columns ∼0.1 to 5 g cm−2, and densities ∼0.1 to 17 g m−3.

Full access
R. A. Ferrare, E. V. Browell, S. Ismail, S. A. Kooi, L. H. Brasseur, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, G. S. Diskin, J. E. M. Goldsmith, B. M. Lesht, J. R. Podolske, G. W. Sachse, F. J. Schmidlin, D. D. Turner, D. N. Whiteman, D. Tobin, L. M. Miloshevich, H. E. Revercomb, B. B. Demoz, and P. Di Girolamo

Abstract

Water vapor mass mixing ratio profiles from NASA's Lidar Atmospheric Sensing Experiment (LASE) system acquired during the Atmospheric Radiation Measurement (ARM)–First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) Water Vapor Experiment (AFWEX) are used as a reference to characterize upper-troposphere water vapor (UTWV) measured by ground-based Raman lidars, radiosondes, and in situ aircraft sensors over the Department of Energy (DOE) ARM Southern Great Plains (SGP) site in northern Oklahoma. LASE was deployed from the NASA DC-8 aircraft and measured water vapor over the ARM SGP Central Facility (CF) site during seven flights between 27 November and 10 December 2000. Initially, the DOE ARM SGP Cloud and Radiation Testbed (CART) Raman lidar (CARL) UTWV profiles were about 5%–7% wetter than LASE in the upper troposphere, and the Vaisala RS80-H radiosonde profiles were about 10% drier than LASE between 8 and 12 km. Scaling the Vaisala water vapor profiles to match the precipitable water vapor (PWV) measured by the ARM SGP microwave radiometer (MWR) did not change these results significantly. By accounting for an overlap correction of the CARL water vapor profiles and by employing schemes designed to correct the Vaisala RS80-H calibration method and account for the time response of the Vaisala RS80-H water vapor sensor, the average differences between the CARL and Vaisala radiosonde upper-troposphere water vapor profiles are reduced to about 5%, which is within the ARM goal of mean differences of less than 10%. The LASE and DC-8 in situ diode laser hygrometer (DLH) UTWV measurements generally agreed to within about 3%–4%. The DC-8 in situ frost point cryogenic hygrometer and Snow White chilled-mirror measurements were drier than the LASE, Raman lidars, and corrected Vaisala RS80H measurements by about 10%–25% and 10%–15%, respectively. Sippican (formerly VIZ Manufacturing) carbon hygristor radiosondes exhibited large variabilities and poor agreement with the other measurements. PWV derived from the LASE profiles agreed to within about 3% on average with PWV derived from the ARM SGP microwave radiometer. The agreement between the LASE and MWR PWV and the LASE and CARL UTWV measurements supports the hypotheses that MWR measurements of the 22-GHz water vapor line can accurately constrain the total water vapor amount and that the CART Raman lidar, when calibrated using the MWR PWV, can provide an accurate, stable reference for characterizing upper-troposphere water vapor.

Full access
Eric J. Jensen, Leonhard Pfister, David E. Jordan, Thaopaul V. Bui, Rei Ueyama, Hanwant B. Singh, Troy D. Thornberry, Andrew W. Rollins, Ru-Shan Gao, David W. Fahey, Karen H. Rosenlof, James W. Elkins, Glenn S. Diskin, Joshua P. DiGangi, R. Paul Lawson, Sarah Woods, Elliot L. Atlas, Maria A. Navarro Rodriguez, Steven C. Wofsy, Jasna Pittman, Charles G. Bardeen, Owen B. Toon, Bruce C. Kindel, Paul A. Newman, Matthew J. McGill, Dennis L. Hlavka, Leslie R. Lait, Mark R. Schoeberl, John W. Bergman, Henry B. Selkirk, M. Joan Alexander, Ji-Eun Kim, Boon H. Lim, Jochen Stutz, and Klaus Pfeilsticker

Abstract

The February–March 2014 deployment of the National Aeronautics and Space Administration (NASA) Airborne Tropical Tropopause Experiment (ATTREX) provided unique in situ measurements in the western Pacific tropical tropopause layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the Convective Transport of Active Species in the Tropics (CONTRAST) and the Coordinated Airborne Studies in the Tropics (CAST) airborne campaigns based in Guam using lower-altitude aircraft (see companion articles in this issue). The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes, as well as for evaluation and improvement of global-model representations of TTL processes. The ATTREX data are publicly available online (at https://espoarchive.nasa.gov/).

Full access