Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: G.H. White x
  • Refine by Access: All Content x
Clear All Modify Search
R. H. White, D. S. Battisti, and G. H. Roe

Abstract

The impacts of Asian orography on the wintertime atmospheric circulation over the Pacific are explored using altered-orography, semi-idealized, general circulation model experiments. The latitude of orography is found to be far more important than height. The Mongolian Plateau and nearby mountain ranges, centered at ~48°N, have an impact on the upper-level wintertime jet stream that is approximately 4 times greater than that of the larger and taller Tibetan Plateau and Himalayas to the south. Key contributing factors to the importance of the Mongolian mountains are latitudinal variations in the meridional potential vorticity gradient and the strength of the impinging wind—both of which determine the amplitude of the atmospheric response—and the structure of the atmosphere, which influences the spatial pattern of the downstream response. Interestingly, while the Mongolian mountains produce a larger response than the Tibetan Plateau in Northern Hemisphere winter, in April–June the response from the Tibetan Plateau predominates. This result holds in two different general circulation models. In experiments with idealized orography, varying the plateau latitude by 20°, from 43° to 63°N, changes the response amplitude by a factor of 2, with a maximum response for orography between 48° and 53°N, comparable to the Mongolian mountains. In these idealized experiments, the latitude of the maximum wintertime jet increase changes by only ~6°. It is proposed that this nearly invariant spatial response pattern is due to variations in the stationary wavenumber with latitude leading to differences in the zonal versus meridional wave propagation.

Full access
M. Kanamitsu, J.C. Alpert, K.A. Campana, P.M. Caplan, D.G. Deaven, M. Iredell, B. Katz, H.-L. Pan, J. Sela, and G.H. White

Abstract

A number of improvements were implemented on 6 March 1991 into the National Meteorological Center's global model, which is used in the global data assimilation system (GDAS), the aviation (AVN) forecast, and the medium-range forecast (MRF):

  • The horizontal resolution of the forecast model was increased from triangular truncation T80 to T126, which corresponds to an equivalent increase in grid resolution from 160 km to 105 km.

  • The use of enhanced orography has been discontinued and replaced by mean orography.

  • A new marine-stratus parameterization was introduced.

  • A new mass-conservation constraint was implemented.

  • The horizontal diffusion in the medium scales was reduced by adopting the Leith formulation.

  • A new, more accurate sea-surface temperature analysis is now used.

In this note, we discuss each of the changes and briefly review the new model performance.

Full access
S. Saha, S. Nadiga, C. Thiaw, J. Wang, W. Wang, Q. Zhang, H. M. Van den Dool, H.-L. Pan, S. Moorthi, D. Behringer, D. Stokes, M. Peña, S. Lord, G. White, W. Ebisuzaki, P. Peng, and P. Xie

Abstract

The Climate Forecast System (CFS), the fully coupled ocean–land–atmosphere dynamical seasonal prediction system, which became operational at NCEP in August 2004, is described and evaluated in this paper. The CFS provides important advances in operational seasonal prediction on a number of fronts. For the first time in the history of U.S. operational seasonal prediction, a dynamical modeling system has demonstrated a level of skill in forecasting U.S. surface temperature and precipitation that is comparable to the skill of the statistical methods used by the NCEP Climate Prediction Center (CPC). This represents a significant improvement over the previous dynamical modeling system used at NCEP. Furthermore, the skill provided by the CFS spatially and temporally complements the skill provided by the statistical tools. The availability of a dynamical modeling tool with demonstrated skill should result in overall improvement in the operational seasonal forecasts produced by CPC.

The atmospheric component of the CFS is a lower-resolution version of the Global Forecast System (GFS) that was the operational global weather prediction model at NCEP during 2003. The ocean component is the GFDL Modular Ocean Model version 3 (MOM3). There are several important improvements inherent in the new CFS relative to the previous dynamical forecast system. These include (i) the atmosphere–ocean coupling spans almost all of the globe (as opposed to the tropical Pacific only); (ii) the CFS is a fully coupled modeling system with no flux correction (as opposed to the previous uncoupled “tier-2” system, which employed multiple bias and flux corrections); and (iii) a set of fully coupled retrospective forecasts covering a 24-yr period (1981–2004), with 15 forecasts per calendar month out to nine months into the future, have been produced with the CFS.

These 24 years of fully coupled retrospective forecasts are of paramount importance to the proper calibration (bias correction) of subsequent operational seasonal forecasts. They provide a meaningful a priori estimate of model skill that is critical in determining the utility of the real-time dynamical forecast in the operational framework. The retrospective dataset also provides a wealth of information for researchers to study interactive atmosphere–land–ocean processes.

Full access
H.J. Freeland, F.M. Boland, J.A. Church, A.J. Clarke, A.M.G. Forbes, A. Huyer, R.L. Smith, R.O.R.Y. Thompson, and N.J. White

Abstract

The Australian Coastal Experiment (ACE) was conducted in the coastal waters of New South Wales from September 1983 to 1984. The data obtained allow a detailed examination of the dynamics of flow on the continental shelf and slope and in particular allow a description of coastal trapped wave modes propagating within the coastal waveguide.

The trapped-wave signal is contaminated by energy from the East Australia current eddies approaching the continental slope. However, the data do allow a clear separation of the first three coastal trapped wave modes over the range of frequencies appropriate to the weather forcing band. Through that frequency range the phase speed is computed and an empirical dispersion relation determined for each mode. The empirical dispersion relations compare well with the theoretical relations indicating that a large fraction of the variance in current velocities on the continental shelf can be accounted for by coastal trapped wave theory.

Wind forcing of trapped waves is also considered and evidence presented that in the ACE area the motions are dominated by the propagation of free waves through the arrays.

Full access
William P. Kustas, Martha C. Anderson, Joseph G. Alfieri, Kyle Knipper, Alfonso Torres-Rua, Christopher K. Parry, Hector Nieto, Nurit Agam, William A. White, Feng Gao, Lynn McKee, John H. Prueger, Lawrence E. Hipps, Sebastian Los, Maria Mar Alsina, Luis Sanchez, Brent Sams, Nick Dokoozlian, Mac McKee, Scott Jones, Yun Yang, Tiffany G. Wilson, Fangni Lei, Andrew McElrone, Josh L. Heitman, Adam M. Howard, Kirk Post, Forrest Melton, and Christopher Hain

Abstract

Particularly in light of California’s recent multiyear drought, there is a critical need for accurate and timely evapotranspiration (ET) and crop stress information to ensure long-term sustainability of high-value crops. Providing this information requires the development of tools applicable across the continuum from subfield scales to improve water management within individual fields up to watershed and regional scales to assess water resources at county and state levels. High-value perennial crops (vineyards and orchards) are major water users, and growers will need better tools to improve water-use efficiency to remain economically viable and sustainable during periods of prolonged drought. To develop these tools, government, university, and industry partners are evaluating a multiscale remote sensing–based modeling system for application over vineyards. During the 2013–17 growing seasons, the Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project has collected micrometeorological and biophysical data within adjacent pinot noir vineyards in the Central Valley of California. Additionally, each year ground, airborne, and satellite remote sensing data were collected during intensive observation periods (IOPs) representing different vine phenological stages. An overview of the measurements and some initial results regarding the impact of vine canopy architecture on modeling ET and plant stress are presented here. Refinements to the ET modeling system based on GRAPEX are being implemented initially at the field scale for validation and then will be integrated into the regional modeling toolkit for large area assessment.

Open access
V. Masson-Delmotte, S. Hou, A. Ekaykin, J. Jouzel, A. Aristarain, R. T. Bernardo, D. Bromwich, O. Cattani, M. Delmotte, S. Falourd, M. Frezzotti, H. Gallée, L. Genoni, E. Isaksson, A. Landais, M. M. Helsen, G. Hoffmann, J. Lopez, V. Morgan, H. Motoyama, D. Noone, H. Oerter, J. R. Petit, A. Royer, R. Uemura, G. A. Schmidt, E. Schlosser, J. C. Simões, E. J. Steig, B. Stenni, M. Stievenard, M. R. van den Broeke, R. S. W. van de Wal, W. J. van de Berg, F. Vimeux, and J. W. C. White

Abstract

A database of surface Antarctic snow isotopic composition is constructed using available measurements, with an estimate of data quality and local variability. Although more than 1000 locations are documented, the spatial coverage remains uneven with a majority of sites located in specific areas of East Antarctica. The database is used to analyze the spatial variations in snow isotopic composition with respect to geographical characteristics (elevation, distance to the coast) and climatic features (temperature, accumulation) and with a focus on deuterium excess. The capacity of theoretical isotopic, regional, and general circulation atmospheric models (including “isotopic” models) to reproduce the observed features and assess the role of moisture advection in spatial deuterium excess fluctuations is analyzed.

Full access
Brian J. Butterworth, Ankur R. Desai, Stefan Metzger, Philip A. Townsend, Mark D. Schwartz, Grant W. Petty, Matthias Mauder, Hannes Vogelmann, Christian G. Andresen, Travis J. Augustine, Timothy H. Bertram, William O. J. Brown, Michael Buban, Patricia Cleary, David J. Durden, Christopher R. Florian, Trevor J. Iglinski, Eric L. Kruger, Kathleen Lantz, Temple R. Lee, Tilden P. Meyers, James K. Mineau, Erik R. Olson, Steven P. Oncley, Sreenath Paleri, Rosalyn A. Pertzborn, Claire Pettersen, David M. Plummer, Laura D. Riihimaki, Eliceo Ruiz Guzman, Joseph Sedlar, Elizabeth N. Smith, Johannes Speidel, Paul C. Stoy, Matthias Sühring, Jonathan E. Thom, David D. Turner, Michael P. Vermeuel, Timothy J. Wagner, Zhien Wang, Luise Wanner, Loren D. White, James M. Wilczak, Daniel B. Wright, and Ting Zheng

Abstract

The Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled by a High-Density Extensive Array of Detectors 2019 (CHEESEHEAD19) is an ongoing National Science Foundation project based on an intensive field campaign that occurred from June to October 2019. The purpose of the study is to examine how the atmospheric boundary layer (ABL) responds to spatial heterogeneity in surface energy fluxes. One of the main objectives is to test whether lack of energy balance closure measured by eddy covariance (EC) towers is related to mesoscale atmospheric processes. Finally, the project evaluates data-driven methods for scaling surface energy fluxes, with the aim to improve model–data comparison and integration. To address these questions, an extensive suite of ground, tower, profiling, and airborne instrumentation was deployed over a 10 km × 10 km domain of a heterogeneous forest ecosystem in the Chequamegon–Nicolet National Forest in northern Wisconsin, United States, centered on an existing 447-m tower that anchors an AmeriFlux/NOAA supersite (US-PFa/WLEF). The project deployed one of the world’s highest-density networks of above-canopy EC measurements of surface energy fluxes. This tower EC network was coupled with spatial measurements of EC fluxes from aircraft; maps of leaf and canopy properties derived from airborne spectroscopy, ground-based measurements of plant productivity, phenology, and physiology; and atmospheric profiles of wind, water vapor, and temperature using radar, sodar, lidar, microwave radiometers, infrared interferometers, and radiosondes. These observations are being used with large-eddy simulation and scaling experiments to better understand submesoscale processes and improve formulations of subgrid-scale processes in numerical weather and climate models.

Open access
Randall M. Dole, J. Ryan Spackman, Matthew Newman, Gilbert P. Compo, Catherine A. Smith, Leslie M. Hartten, Joseph J. Barsugli, Robert S. Webb, Martin P. Hoerling, Robert Cifelli, Klaus Wolter, Christopher D. Barnet, Maria Gehne, Ronald Gelaro, George N. Kiladis, Scott Abbott, Elena Akish, John Albers, John M. Brown, Christopher J. Cox, Lisa Darby, Gijs de Boer, Barbara DeLuisi, Juliana Dias, Jason Dunion, Jon Eischeid, Christopher Fairall, Antonia Gambacorta, Brian K. Gorton, Andrew Hoell, Janet Intrieri, Darren Jackson, Paul E. Johnston, Richard Lataitis, Kelly M. Mahoney, Katherine McCaffrey, H. Alex McColl, Michael J. Mueller, Donald Murray, Paul J. Neiman, William Otto, Ola Persson, Xiao-Wei Quan, Imtiaz Rangwala, Andrea J. Ray, David Reynolds, Emily Riley Dellaripa, Karen Rosenlof, Naoko Sakaeda, Prashant D. Sardeshmukh, Laura C. Slivinski, Lesley Smith, Amy Solomon, Dustin Swales, Stefan Tulich, Allen White, Gary Wick, Matthew G. Winterkorn, Daniel E. Wolfe, and Robert Zamora

Abstract

Forecasts by mid-2015 for a strong El Niño during winter 2015/16 presented an exceptional scientific opportunity to accelerate advances in understanding and predictions of an extreme climate event and its impacts while the event was ongoing. Seizing this opportunity, the National Oceanic and Atmospheric Administration (NOAA) initiated an El Niño Rapid Response (ENRR), conducting the first field campaign to obtain intensive atmospheric observations over the tropical Pacific during El Niño.

The overarching ENRR goal was to determine the atmospheric response to El Niño and the implications for predicting extratropical storms and U.S. West Coast rainfall. The field campaign observations extended from the central tropical Pacific to the West Coast, with a primary focus on the initial tropical atmospheric response that links El Niño to its global impacts. NOAA deployed its Gulfstream-IV (G-IV) aircraft to obtain observations around organized tropical convection and poleward convective outflow near the heart of El Niño. Additional tropical Pacific observations were obtained by radiosondes launched from Kiritimati , Kiribati, and the NOAA ship Ronald H. Brown, and in the eastern North Pacific by the National Aeronautics and Space Administration (NASA) Global Hawk unmanned aerial system. These observations were all transmitted in real time for use in operational prediction models. An X-band radar installed in Santa Clara, California, helped characterize precipitation distributions. This suite supported an end-to-end capability extending from tropical Pacific processes to West Coast impacts. The ENRR observations were used during the event in operational predictions. They now provide an unprecedented dataset for further research to improve understanding and predictions of El Niño and its impacts.

Open access
William J. Merryfield, Johanna Baehr, Lauriane Batté, Emily J. Becker, Amy H. Butler, Caio A. S. Coelho, Gokhan Danabasoglu, Paul A. Dirmeyer, Francisco J. Doblas-Reyes, Daniela I. V. Domeisen, Laura Ferranti, Tatiana Ilynia, Arun Kumar, Wolfgang A. Müller, Michel Rixen, Andrew W. Robertson, Doug M. Smith, Yuhei Takaya, Matthias Tuma, Frederic Vitart, Christopher J. White, Mariano S. Alvarez, Constantin Ardilouze, Hannah Attard, Cory Baggett, Magdalena A. Balmaseda, Asmerom F. Beraki, Partha S. Bhattacharjee, Roberto Bilbao, Felipe M. de Andrade, Michael J. DeFlorio, Leandro B. Díaz, Muhammad Azhar Ehsan, Georgios Fragkoulidis, Sam Grainger, Benjamin W. Green, Momme C. Hell, Johnna M. Infanti, Katharina Isensee, Takahito Kataoka, Ben P. Kirtman, Nicholas P. Klingaman, June-Yi Lee, Kirsten Mayer, Roseanna McKay, Jennifer V. Mecking, Douglas E. Miller, Nele Neddermann, Ching Ho Justin Ng, Albert Ossó, Klaus Pankatz, Simon Peatman, Kathy Pegion, Judith Perlwitz, G. Cristina Recalde-Coronel, Annika Reintges, Christoph Renkl, Balakrishnan Solaraju-Murali, Aaron Spring, Cristiana Stan, Y. Qiang Sun, Carly R. Tozer, Nicolas Vigaud, Steven Woolnough, and Stephen Yeager

Abstract

Weather and climate variations on subseasonal to decadal time scales can have enormous social, economic, and environmental impacts, making skillful predictions on these time scales a valuable tool for decision-makers. As such, there is a growing interest in the scientific, operational, and applications communities in developing forecasts to improve our foreknowledge of extreme events. On subseasonal to seasonal (S2S) time scales, these include high-impact meteorological events such as tropical cyclones, extratropical storms, floods, droughts, and heat and cold waves. On seasonal to decadal (S2D) time scales, while the focus broadly remains similar (e.g., on precipitation, surface and upper-ocean temperatures, and their effects on the probabilities of high-impact meteorological events), understanding the roles of internal variability and externally forced variability such as anthropogenic warming in forecasts also becomes important. The S2S and S2D communities share common scientific and technical challenges. These include forecast initialization and ensemble generation; initialization shock and drift; understanding the onset of model systematic errors; bias correction, calibration, and forecast quality assessment; model resolution; atmosphere–ocean coupling; sources and expectations for predictability; and linking research, operational forecasting, and end-user needs. In September 2018 a coordinated pair of international conferences, framed by the above challenges, was organized jointly by the World Climate Research Programme (WCRP) and the World Weather Research Programme (WWRP). These conferences surveyed the state of S2S and S2D prediction, ongoing research, and future needs, providing an ideal basis for synthesizing current and emerging developments in these areas that promise to enhance future operational services. This article provides such a synthesis.

Free access
William J. Merryfield, Johanna Baehr, Lauriane Batté, Emily J. Becker, Amy H. Butler, Caio A. S. Coelho, Gokhan Danabasoglu, Paul A. Dirmeyer, Francisco J. Doblas-Reyes, Daniela I. V. Domeisen, Laura Ferranti, Tatiana Ilynia, Arun Kumar, Wolfgang A. Müller, Michel Rixen, Andrew W. Robertson, Doug M. Smith, Yuhei Takaya, Matthias Tuma, Frederic Vitart, Christopher J. White, Mariano S. Alvarez, Constantin Ardilouze, Hannah Attard, Cory Baggett, Magdalena A. Balmaseda, Asmerom F. Beraki, Partha S. Bhattacharjee, Roberto Bilbao, Felipe M. de Andrade, Michael J. DeFlorio, Leandro B. Díaz, Muhammad Azhar Ehsan, Georgios Fragkoulidis, Sam Grainger, Benjamin W. Green, Momme C. Hell, Johnna M. Infanti, Katharina Isensee, Takahito Kataoka, Ben P. Kirtman, Nicholas P. Klingaman, June-Yi Lee, Kirsten Mayer, Roseanna McKay, Jennifer V. Mecking, Douglas E. Miller, Nele Neddermann, Ching Ho Justin Ng, Albert Ossó, Klaus Pankatz, Simon Peatman, Kathy Pegion, Judith Perlwitz, G. Cristina Recalde-Coronel, Annika Reintges, Christoph Renkl, Balakrishnan Solaraju-Murali, Aaron Spring, Cristiana Stan, Y. Qiang Sun, Carly R. Tozer, Nicolas Vigaud, Steven Woolnough, and Stephen Yeager
Full access