Search Results
You are looking at 1 - 10 of 16 items for
- Author or Editor: Gabriëlle J. M. De Lannoy x
- Refine by Access: All Content x
Abstract
Multiangle and multipolarization L-band microwave observations from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated into the Goddard Earth Observing System Model, version 5 (GEOS-5), using a spatially distributed ensemble Kalman filter. A variant of this system is also used for the Soil Moisture Active Passive (SMAP) Level 4 soil moisture product. The assimilation involves a forward simulation of brightness temperatures (Tb) for various incidence angles and polarizations and an inversion of the differences between Tb forecasts and observations into updates to modeled surface and root-zone soil moisture, as well as surface soil temperature. With SMOS Tb assimilation, the unbiased root-mean-square difference between simulations and gridcell-scale in situ measurements in a few U.S. watersheds during the period from 1 July 2010 to 1 July 2014 is 0.034 m3 m−3 for both surface and root-zone soil moisture. A validation against gridcell-scale measurements and point-scale measurements from sparse networks in the United States, Australia, and Europe demonstrates that the assimilation improves both surface and root-zone soil moisture results over the open-loop (no assimilation) estimates in areas with limited vegetation and terrain complexity. At the global scale, the assimilation of SMOS Tb introduces mean absolute increments of 0.004 m3 m−3 to the profile soil moisture content and 0.7 K to the surface soil temperature. The updates induce changes to energy fluxes and runoff amounting to about 15% of their respective temporal standard deviation.
Abstract
Multiangle and multipolarization L-band microwave observations from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated into the Goddard Earth Observing System Model, version 5 (GEOS-5), using a spatially distributed ensemble Kalman filter. A variant of this system is also used for the Soil Moisture Active Passive (SMAP) Level 4 soil moisture product. The assimilation involves a forward simulation of brightness temperatures (Tb) for various incidence angles and polarizations and an inversion of the differences between Tb forecasts and observations into updates to modeled surface and root-zone soil moisture, as well as surface soil temperature. With SMOS Tb assimilation, the unbiased root-mean-square difference between simulations and gridcell-scale in situ measurements in a few U.S. watersheds during the period from 1 July 2010 to 1 July 2014 is 0.034 m3 m−3 for both surface and root-zone soil moisture. A validation against gridcell-scale measurements and point-scale measurements from sparse networks in the United States, Australia, and Europe demonstrates that the assimilation improves both surface and root-zone soil moisture results over the open-loop (no assimilation) estimates in areas with limited vegetation and terrain complexity. At the global scale, the assimilation of SMOS Tb introduces mean absolute increments of 0.004 m3 m−3 to the profile soil moisture content and 0.7 K to the surface soil temperature. The updates induce changes to energy fluxes and runoff amounting to about 15% of their respective temporal standard deviation.
Abstract
Surface heat fluxes are vital to hydrological and environmental studies, but mapping them accurately over a large area remains a problem. In this study, brightness temperature (TB) observations or soil moisture retrievals from the NASA Soil Moisture Active Passive (SMAP) mission and land surface temperature (LST) product from the Geostationary Operational Environmental Satellite (GOES) are assimilated together into a coupled water and heat transfer model to improve surface heat flux estimates. A particle filter is used to assimilate SMAP data, while a particle smoothing method is adopted to assimilate GOES LST time series, correcting for both systematic biases via parameter updating and for short-term error via state updating. One experiment assimilates SMAP TB at horizontal polarization and GOES LST, a second experiment assimilates SMAP TB at vertical polarization and GOES LST, and a third experiment assimilates SMAP soil moisture retrievals along with GOES LST. The aim is to examine if the assimilation of physically consistent TB and LST observations could yield improved surface heat flux estimates. It is demonstrated that all three assimilation experiments improved flux estimates compared to a no-assimilation case. Assimilating TB data tends to produce smaller bias in soil moisture estimates compared to assimilating soil moisture retrievals, but the estimates are influenced by the respective bias correction approaches. Despite the differences in soil moisture estimates, the flux estimates from different assimilation experiments are in general very similar.
Abstract
Surface heat fluxes are vital to hydrological and environmental studies, but mapping them accurately over a large area remains a problem. In this study, brightness temperature (TB) observations or soil moisture retrievals from the NASA Soil Moisture Active Passive (SMAP) mission and land surface temperature (LST) product from the Geostationary Operational Environmental Satellite (GOES) are assimilated together into a coupled water and heat transfer model to improve surface heat flux estimates. A particle filter is used to assimilate SMAP data, while a particle smoothing method is adopted to assimilate GOES LST time series, correcting for both systematic biases via parameter updating and for short-term error via state updating. One experiment assimilates SMAP TB at horizontal polarization and GOES LST, a second experiment assimilates SMAP TB at vertical polarization and GOES LST, and a third experiment assimilates SMAP soil moisture retrievals along with GOES LST. The aim is to examine if the assimilation of physically consistent TB and LST observations could yield improved surface heat flux estimates. It is demonstrated that all three assimilation experiments improved flux estimates compared to a no-assimilation case. Assimilating TB data tends to produce smaller bias in soil moisture estimates compared to assimilating soil moisture retrievals, but the estimates are influenced by the respective bias correction approaches. Despite the differences in soil moisture estimates, the flux estimates from different assimilation experiments are in general very similar.
Abstract
The objective of this paper is to improve the performance of a hydrologic model through the assimilation of observed discharge. Since an observation of discharge at a certain time is always influenced by the catchment wetness conditions and meteorology in the past, the assimilation method will have to modify both the past and present soil wetness conditions. For this purpose, a bias-corrected retrospective ensemble Kalman filter has been used as the assimilation algorithm. The assimilation methodology takes into account bias in the forecast state variables for the calculation of the optimal estimates. A set of twin experiments has been developed, in which it is attempted to correct the model results obtained with erroneous initial conditions and strongly over- and underestimated precipitation data. The results suggest that the assimilation of observed discharge can correct for erroneous model initial conditions. When the precipitation used to force the model is underestimated, the assimilation of observed discharge can reduce the bias in the modeled turbulent fluxes by approximately 50%. This is due to a correction of the modeled soil moisture. In the case of an overestimation of the precipitation, an improvement in the modeled wetness conditions is also obtained after data assimilation, but this does not lead to a significant improvement in the modeled energy balance. The results in this paper indicate that there is potential to improve the estimation of hydrologic states and fluxes through the assimilation of observed discharge data.
Abstract
The objective of this paper is to improve the performance of a hydrologic model through the assimilation of observed discharge. Since an observation of discharge at a certain time is always influenced by the catchment wetness conditions and meteorology in the past, the assimilation method will have to modify both the past and present soil wetness conditions. For this purpose, a bias-corrected retrospective ensemble Kalman filter has been used as the assimilation algorithm. The assimilation methodology takes into account bias in the forecast state variables for the calculation of the optimal estimates. A set of twin experiments has been developed, in which it is attempted to correct the model results obtained with erroneous initial conditions and strongly over- and underestimated precipitation data. The results suggest that the assimilation of observed discharge can correct for erroneous model initial conditions. When the precipitation used to force the model is underestimated, the assimilation of observed discharge can reduce the bias in the modeled turbulent fluxes by approximately 50%. This is due to a correction of the modeled soil moisture. In the case of an overestimation of the precipitation, an improvement in the modeled wetness conditions is also obtained after data assimilation, but this does not lead to a significant improvement in the modeled energy balance. The results in this paper indicate that there is potential to improve the estimation of hydrologic states and fluxes through the assimilation of observed discharge data.
Abstract
A zero-order (tau-omega) microwave radiative transfer model (RTM) is coupled to the Goddard Earth Observing System, version 5 (GEOS-5) catchment land surface model in preparation for the future assimilation of global brightness temperatures (Tb) from the L-band (1.4 GHz) Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions. Simulations using literature values for the RTM parameters result in Tb biases of 10–50 K against SMOS observations. Multiangular SMOS observations during nonfrozen conditions from 1 July 2011 to 1 July 2012 are used to calibrate parameters related to the microwave roughness h, vegetation opacity τ and/or scattering albedo ω separately for each observed 36-km land grid cell. A particle swarm optimization is used to minimize differences in the long-term (climatological) mean values and standard deviations between SMOS observations and simulations, without attempting to reduce the shorter-term (seasonal to daily) errors. After calibration, global Tb simulations for the validation year (1 July 2010 to 1 July 2011) are largely unbiased for multiple incidence angles and both H and V polarization [e.g., the global average absolute difference is 2.7 K for Tb H (42.5°), i.e., at 42.5° incidence angle]. The calibrated parameter values depend to some extent on the specific land surface conditions simulated by the GEOS-5 system and on the scale of the SMOS observations, but they also show realistic spatial distributions. Aggregating the calibrated parameter values by vegetation class prior to using them in the RTM maintains low global biases but increases local biases [e.g., the global average absolute difference is 7.1 K for Tb H (42.5°)].
Abstract
A zero-order (tau-omega) microwave radiative transfer model (RTM) is coupled to the Goddard Earth Observing System, version 5 (GEOS-5) catchment land surface model in preparation for the future assimilation of global brightness temperatures (Tb) from the L-band (1.4 GHz) Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions. Simulations using literature values for the RTM parameters result in Tb biases of 10–50 K against SMOS observations. Multiangular SMOS observations during nonfrozen conditions from 1 July 2011 to 1 July 2012 are used to calibrate parameters related to the microwave roughness h, vegetation opacity τ and/or scattering albedo ω separately for each observed 36-km land grid cell. A particle swarm optimization is used to minimize differences in the long-term (climatological) mean values and standard deviations between SMOS observations and simulations, without attempting to reduce the shorter-term (seasonal to daily) errors. After calibration, global Tb simulations for the validation year (1 July 2010 to 1 July 2011) are largely unbiased for multiple incidence angles and both H and V polarization [e.g., the global average absolute difference is 2.7 K for Tb H (42.5°), i.e., at 42.5° incidence angle]. The calibrated parameter values depend to some extent on the specific land surface conditions simulated by the GEOS-5 system and on the scale of the SMOS observations, but they also show realistic spatial distributions. Aggregating the calibrated parameter values by vegetation class prior to using them in the RTM maintains low global biases but increases local biases [e.g., the global average absolute difference is 7.1 K for Tb H (42.5°)].
Abstract
The land surface freeze–thaw (F/T) state plays a key role in the hydrological and carbon cycles and thus affects water and energy exchanges and vegetation productivity at the land surface. In this study, an F/T assimilation algorithm was developed for the NASA Goddard Earth Observing System, version 5 (GEOS-5), modeling and assimilation framework. The algorithm includes a newly developed observation operator that diagnoses the landscape F/T state in the GEOS-5 Catchment land surface model. The F/T analysis is a rule-based approach that adjusts Catchment model state variables in response to binary F/T observations, while also considering forecast and observation errors. A regional observing system simulation experiment was conducted using synthetically generated F/T observations. The assimilation of perfect (error free) F/T observations reduced the root-mean-square errors (RMSEs) of surface temperature and soil temperature by 0.206° and 0.061°C, respectively, when compared to model estimates (equivalent to a relative RMSE reduction of 6.7% and 3.1%, respectively). For a maximum classification error CEmax of 10% in the synthetic F/T observations, the F/T assimilation reduced the RMSE of surface temperature and soil temperature by 0.178° and 0.036°C, respectively. For CEmax = 20%, the F/T assimilation still reduces the RMSE of model surface temperature estimates by 0.149°C but yields no improvement over the model soil temperature estimates. The F/T assimilation scheme is being developed to exploit planned F/T products from the NASA Soil Moisture Active Passive (SMAP) mission.
Abstract
The land surface freeze–thaw (F/T) state plays a key role in the hydrological and carbon cycles and thus affects water and energy exchanges and vegetation productivity at the land surface. In this study, an F/T assimilation algorithm was developed for the NASA Goddard Earth Observing System, version 5 (GEOS-5), modeling and assimilation framework. The algorithm includes a newly developed observation operator that diagnoses the landscape F/T state in the GEOS-5 Catchment land surface model. The F/T analysis is a rule-based approach that adjusts Catchment model state variables in response to binary F/T observations, while also considering forecast and observation errors. A regional observing system simulation experiment was conducted using synthetically generated F/T observations. The assimilation of perfect (error free) F/T observations reduced the root-mean-square errors (RMSEs) of surface temperature and soil temperature by 0.206° and 0.061°C, respectively, when compared to model estimates (equivalent to a relative RMSE reduction of 6.7% and 3.1%, respectively). For a maximum classification error CEmax of 10% in the synthetic F/T observations, the F/T assimilation reduced the RMSE of surface temperature and soil temperature by 0.178° and 0.036°C, respectively. For CEmax = 20%, the F/T assimilation still reduces the RMSE of model surface temperature estimates by 0.149°C but yields no improvement over the model soil temperature estimates. The F/T assimilation scheme is being developed to exploit planned F/T products from the NASA Soil Moisture Active Passive (SMAP) mission.
Abstract
The Modern-Era Retrospective Analysis for Research and Applications (MERRA) is a state-of-the-art reanalysis that provides, in addition to atmospheric fields, global estimates of soil moisture, latent heat flux, snow, and runoff for 1979–present. This study introduces a supplemental and improved set of land surface hydrological fields (“MERRA-Land”) generated by rerunning a revised version of the land component of the MERRA system. Specifically, the MERRA-Land estimates benefit from corrections to the precipitation forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised parameter values in the rainfall interception model, changes that effectively correct for known limitations in the MERRA surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against observations and compared to the skill of the state-of-the-art ECMWF Re-Analysis-Interim (ERA-I). MERRA-Land and ERA-I root zone soil moisture skills (against in situ observations at 85 U.S. stations) are comparable and significantly greater than that of MERRA. Throughout the Northern Hemisphere, MERRA and MERRA-Land agree reasonably well with in situ snow depth measurements (from 583 stations) and with snow water equivalent from an independent analysis. Runoff skill (against naturalized stream flow observations from 18 U.S. basins) of MERRA and MERRA-Land is typically higher than that of ERA-I. With a few exceptions, the MERRA-Land data appear more accurate than the original MERRA estimates and are thus recommended for those interested in using MERRA output for land surface hydrological studies.
Abstract
The Modern-Era Retrospective Analysis for Research and Applications (MERRA) is a state-of-the-art reanalysis that provides, in addition to atmospheric fields, global estimates of soil moisture, latent heat flux, snow, and runoff for 1979–present. This study introduces a supplemental and improved set of land surface hydrological fields (“MERRA-Land”) generated by rerunning a revised version of the land component of the MERRA system. Specifically, the MERRA-Land estimates benefit from corrections to the precipitation forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised parameter values in the rainfall interception model, changes that effectively correct for known limitations in the MERRA surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against observations and compared to the skill of the state-of-the-art ECMWF Re-Analysis-Interim (ERA-I). MERRA-Land and ERA-I root zone soil moisture skills (against in situ observations at 85 U.S. stations) are comparable and significantly greater than that of MERRA. Throughout the Northern Hemisphere, MERRA and MERRA-Land agree reasonably well with in situ snow depth measurements (from 583 stations) and with snow water equivalent from an independent analysis. Runoff skill (against naturalized stream flow observations from 18 U.S. basins) of MERRA and MERRA-Land is typically higher than that of ERA-I. With a few exceptions, the MERRA-Land data appear more accurate than the original MERRA estimates and are thus recommended for those interested in using MERRA output for land surface hydrological studies.
Abstract
Data assimilation aims to provide an optimal estimate of the overall system state, not only for an observed state variable or location. However, large-scale land surface models are typically column-based and purely random ensemble perturbation of states will lead to block-diagonal a priori (or background) error covariance. This facilitates the filtering calculations but compromises the potential of data assimilation to influence (unobserved) vertical and horizontal neighboring state variables. Here, a combination of an ensemble Kalman filter and an adaptive covariance correction method is explored to optimize the variances and retrieve the off-block-diagonal correlations in the a priori error covariance matrix. In a first time period, all available soil moisture profile observations in a small agricultural field are assimilated into the Community Land Model, version 2.0 (CLM2.0) to find the adaptive second-order a priori error information. After that period, only observations from single individual soil profiles are assimilated with inclusion of this adaptive information. It is shown that assimilation of a single profile can partially rectify the incorrectly simulated soil moisture spatial mean and variability. The largest reduction in the root-mean-square error in the soil moisture field varies between 7% and 22%, depending on the soil depth, when assimilating a single complete profile every two days during three months with a single time-invariant covariance correction.
Abstract
Data assimilation aims to provide an optimal estimate of the overall system state, not only for an observed state variable or location. However, large-scale land surface models are typically column-based and purely random ensemble perturbation of states will lead to block-diagonal a priori (or background) error covariance. This facilitates the filtering calculations but compromises the potential of data assimilation to influence (unobserved) vertical and horizontal neighboring state variables. Here, a combination of an ensemble Kalman filter and an adaptive covariance correction method is explored to optimize the variances and retrieve the off-block-diagonal correlations in the a priori error covariance matrix. In a first time period, all available soil moisture profile observations in a small agricultural field are assimilated into the Community Land Model, version 2.0 (CLM2.0) to find the adaptive second-order a priori error information. After that period, only observations from single individual soil profiles are assimilated with inclusion of this adaptive information. It is shown that assimilation of a single profile can partially rectify the incorrectly simulated soil moisture spatial mean and variability. The largest reduction in the root-mean-square error in the soil moisture field varies between 7% and 22%, depending on the soil depth, when assimilating a single complete profile every two days during three months with a single time-invariant covariance correction.
Abstract
Most agricultural soils have experienced substantial soil organic carbon losses in time. These losses motivate recent calls to restore organic carbon in agricultural lands to improve biogeochemical cycling and for climate change mitigation. Declines in organic carbon also reduce soil infiltration and water holding capacity, which may have important effects on regional hydrology and climate. To explore the regional hydroclimate impacts of soil organic carbon changes, we conduct new global climate model experiments with NASA Goddard Institute for Space Studies ModelE that include spatially explicit soil organic carbon concentrations associated with different human land management scenarios. Compared to a “no land use” case, a year 2010 soil degradation scenario, in which organic carbon content (OCC; weight %) is reduced by a factor of ∼0.12 on average across agricultural soils, resulted in soil moisture losses between 0.5 and 1 temporal standard deviations over eastern Asia, northern Europe, and the eastern United States. In a more extreme idealized scenario where OCC is reduced uniformly by 0.66 across agricultural soils, soil moisture losses exceed one standard deviation in both hemispheres. Within the model, these soil moisture declines occur primarily due to reductions in porosity (and to a lesser extent infiltration) that overall soil water holding capacity. These results demonstrate that changes in soil organic carbon can have meaningful, large-scale effects on regional hydroclimate and should be considered in climate model evaluations and developments. Further, this also suggests that soil restoration efforts targeting the carbon cycle are likely to have additional benefits for improving drought resilience.
Abstract
Most agricultural soils have experienced substantial soil organic carbon losses in time. These losses motivate recent calls to restore organic carbon in agricultural lands to improve biogeochemical cycling and for climate change mitigation. Declines in organic carbon also reduce soil infiltration and water holding capacity, which may have important effects on regional hydrology and climate. To explore the regional hydroclimate impacts of soil organic carbon changes, we conduct new global climate model experiments with NASA Goddard Institute for Space Studies ModelE that include spatially explicit soil organic carbon concentrations associated with different human land management scenarios. Compared to a “no land use” case, a year 2010 soil degradation scenario, in which organic carbon content (OCC; weight %) is reduced by a factor of ∼0.12 on average across agricultural soils, resulted in soil moisture losses between 0.5 and 1 temporal standard deviations over eastern Asia, northern Europe, and the eastern United States. In a more extreme idealized scenario where OCC is reduced uniformly by 0.66 across agricultural soils, soil moisture losses exceed one standard deviation in both hemispheres. Within the model, these soil moisture declines occur primarily due to reductions in porosity (and to a lesser extent infiltration) that overall soil water holding capacity. These results demonstrate that changes in soil organic carbon can have meaningful, large-scale effects on regional hydroclimate and should be considered in climate model evaluations and developments. Further, this also suggests that soil restoration efforts targeting the carbon cycle are likely to have additional benefits for improving drought resilience.
Abstract
The MERRA-2 atmospheric reanalysis product provides global, 1-hourly estimates of land surface conditions for 1980–present at ~50-km resolution. MERRA-2 uses observations-based precipitation to force the land (unlike its predecessor, MERRA). This paper evaluates MERRA-2 and MERRA land hydrology estimates, along with those of the land-only MERRA-Land and ERA-Interim/Land products, which also use observations-based precipitation. Overall, MERRA-2 land hydrology estimates are better than those of MERRA-Land and MERRA. A comparison against GRACE satellite observations of terrestrial water storage demonstrates clear improvements in MERRA-2 over MERRA in South America and Africa but also reflects known errors in the observations used to correct the MERRA-2 precipitation. Validation against in situ measurements from 220–320 stations in North America, Europe, and Australia shows that MERRA-2 and MERRA-Land have the highest surface and root zone soil moisture skill, slightly higher than that of ERA-Interim/Land and higher than that of MERRA (significantly for surface soil moisture). Snow amounts from MERRA-2 have lower bias and correlate better against reference data from the Canadian Meteorological Centre than do those of MERRA-Land and MERRA, with MERRA-2 skill roughly matching that of ERA-Interim/Land. Validation with MODIS satellite observations shows that MERRA-2 has a lower snow cover probability of detection and probability of false detection than MERRA, owing partly to MERRA-2’s lower midwinter, midlatitude snow amounts and partly to MERRA-2’s revised snow depletion curve parameter compared to MERRA. Finally, seasonal anomaly R values against naturalized streamflow measurements in the United States are, on balance, highest for MERRA-2 and ERA-Interim/Land, somewhat lower for MERRA-Land, and lower still for MERRA (significantly in four basins).
Abstract
The MERRA-2 atmospheric reanalysis product provides global, 1-hourly estimates of land surface conditions for 1980–present at ~50-km resolution. MERRA-2 uses observations-based precipitation to force the land (unlike its predecessor, MERRA). This paper evaluates MERRA-2 and MERRA land hydrology estimates, along with those of the land-only MERRA-Land and ERA-Interim/Land products, which also use observations-based precipitation. Overall, MERRA-2 land hydrology estimates are better than those of MERRA-Land and MERRA. A comparison against GRACE satellite observations of terrestrial water storage demonstrates clear improvements in MERRA-2 over MERRA in South America and Africa but also reflects known errors in the observations used to correct the MERRA-2 precipitation. Validation against in situ measurements from 220–320 stations in North America, Europe, and Australia shows that MERRA-2 and MERRA-Land have the highest surface and root zone soil moisture skill, slightly higher than that of ERA-Interim/Land and higher than that of MERRA (significantly for surface soil moisture). Snow amounts from MERRA-2 have lower bias and correlate better against reference data from the Canadian Meteorological Centre than do those of MERRA-Land and MERRA, with MERRA-2 skill roughly matching that of ERA-Interim/Land. Validation with MODIS satellite observations shows that MERRA-2 has a lower snow cover probability of detection and probability of false detection than MERRA, owing partly to MERRA-2’s lower midwinter, midlatitude snow amounts and partly to MERRA-2’s revised snow depletion curve parameter compared to MERRA. Finally, seasonal anomaly R values against naturalized streamflow measurements in the United States are, on balance, highest for MERRA-2 and ERA-Interim/Land, somewhat lower for MERRA-Land, and lower still for MERRA (significantly in four basins).
Abstract
The NASA Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides global, 9-km resolution, 3-hourly surface and root-zone soil moisture from April 2015 to present with a mean latency of 2.5 days from the time of observation. The L4_SM algorithm assimilates SMAP L-band (1.4 GHz) brightness temperature (Tb) observations into the NASA Catchment land surface model as the model is driven with observation-based precipitation. This paper describes and evaluates the use of satellite- and gauge-based precipitation from the NASA Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (IMERG) products in the L4_SM algorithm beginning with L4_SM Version 6. Specifically, IMERG is used in two ways: (i) The L4_SM precipitation reference climatology is primarily based on IMERG-Final (Version 06B) data, replacing the Global Precipitation Climatology Project version 2.2 data used in previous L4_SM versions, and (ii) the precipitation forcing outside of North America and the high latitudes is corrected to match the daily totals from IMERG, replacing the gauge-only, daily product or uncorrected weather analysis precipitation used there in earlier L4_SM versions. The use of IMERG precipitation improves the anomaly time series correlation coefficient of L4_SM surface soil moisture (versus independent satellite estimates) by 0.03 in the global average and by up to ∼0.3 in parts of South America, Africa, Australia, and East Asia, where the quality of the gauge-only precipitation product used in earlier L4_SM versions is poor. The improvements also reduce the time series standard deviation of the Tb observation-minus-forecast residuals from 5.5 K in L4_SM Version 5 to 5.1 K in Version 6.
Abstract
The NASA Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides global, 9-km resolution, 3-hourly surface and root-zone soil moisture from April 2015 to present with a mean latency of 2.5 days from the time of observation. The L4_SM algorithm assimilates SMAP L-band (1.4 GHz) brightness temperature (Tb) observations into the NASA Catchment land surface model as the model is driven with observation-based precipitation. This paper describes and evaluates the use of satellite- and gauge-based precipitation from the NASA Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (IMERG) products in the L4_SM algorithm beginning with L4_SM Version 6. Specifically, IMERG is used in two ways: (i) The L4_SM precipitation reference climatology is primarily based on IMERG-Final (Version 06B) data, replacing the Global Precipitation Climatology Project version 2.2 data used in previous L4_SM versions, and (ii) the precipitation forcing outside of North America and the high latitudes is corrected to match the daily totals from IMERG, replacing the gauge-only, daily product or uncorrected weather analysis precipitation used there in earlier L4_SM versions. The use of IMERG precipitation improves the anomaly time series correlation coefficient of L4_SM surface soil moisture (versus independent satellite estimates) by 0.03 in the global average and by up to ∼0.3 in parts of South America, Africa, Australia, and East Asia, where the quality of the gauge-only precipitation product used in earlier L4_SM versions is poor. The improvements also reduce the time series standard deviation of the Tb observation-minus-forecast residuals from 5.5 K in L4_SM Version 5 to 5.1 K in Version 6.