Search Results

You are looking at 1 - 10 of 14 items for

  • Author or Editor: Gabrielle J. M. De Lannoy x
  • All content x
Clear All Modify Search
Gabriëlle J. M. De Lannoy and Rolf H. Reichle

Abstract

Multiangle and multipolarization L-band microwave observations from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated into the Goddard Earth Observing System Model, version 5 (GEOS-5), using a spatially distributed ensemble Kalman filter. A variant of this system is also used for the Soil Moisture Active Passive (SMAP) Level 4 soil moisture product. The assimilation involves a forward simulation of brightness temperatures (Tb) for various incidence angles and polarizations and an inversion of the differences between Tb forecasts and observations into updates to modeled surface and root-zone soil moisture, as well as surface soil temperature. With SMOS Tb assimilation, the unbiased root-mean-square difference between simulations and gridcell-scale in situ measurements in a few U.S. watersheds during the period from 1 July 2010 to 1 July 2014 is 0.034 m3 m−3 for both surface and root-zone soil moisture. A validation against gridcell-scale measurements and point-scale measurements from sparse networks in the United States, Australia, and Europe demonstrates that the assimilation improves both surface and root-zone soil moisture results over the open-loop (no assimilation) estimates in areas with limited vegetation and terrain complexity. At the global scale, the assimilation of SMOS Tb introduces mean absolute increments of 0.004 m3 m−3 to the profile soil moisture content and 0.7 K to the surface soil temperature. The updates induce changes to energy fluxes and runoff amounting to about 15% of their respective temporal standard deviation.

Full access
Valentijn R. N. Pauwels and Gabriëlle J. M. De Lannoy

Abstract

The objective of this paper is to improve the performance of a hydrologic model through the assimilation of observed discharge. Since an observation of discharge at a certain time is always influenced by the catchment wetness conditions and meteorology in the past, the assimilation method will have to modify both the past and present soil wetness conditions. For this purpose, a bias-corrected retrospective ensemble Kalman filter has been used as the assimilation algorithm. The assimilation methodology takes into account bias in the forecast state variables for the calculation of the optimal estimates. A set of twin experiments has been developed, in which it is attempted to correct the model results obtained with erroneous initial conditions and strongly over- and underestimated precipitation data. The results suggest that the assimilation of observed discharge can correct for erroneous model initial conditions. When the precipitation used to force the model is underestimated, the assimilation of observed discharge can reduce the bias in the modeled turbulent fluxes by approximately 50%. This is due to a correction of the modeled soil moisture. In the case of an overestimation of the precipitation, an improvement in the modeled wetness conditions is also obtained after data assimilation, but this does not lead to a significant improvement in the modeled energy balance. The results in this paper indicate that there is potential to improve the estimation of hydrologic states and fluxes through the assimilation of observed discharge data.

Full access
Gabriëlle J. M. De Lannoy, Paul R. Houser, Niko E. C. Verhoest, and Valentijn R. N. Pauwels

Abstract

Data assimilation aims to provide an optimal estimate of the overall system state, not only for an observed state variable or location. However, large-scale land surface models are typically column-based and purely random ensemble perturbation of states will lead to block-diagonal a priori (or background) error covariance. This facilitates the filtering calculations but compromises the potential of data assimilation to influence (unobserved) vertical and horizontal neighboring state variables. Here, a combination of an ensemble Kalman filter and an adaptive covariance correction method is explored to optimize the variances and retrieve the off-block-diagonal correlations in the a priori error covariance matrix. In a first time period, all available soil moisture profile observations in a small agricultural field are assimilated into the Community Land Model, version 2.0 (CLM2.0) to find the adaptive second-order a priori error information. After that period, only observations from single individual soil profiles are assimilated with inclusion of this adaptive information. It is shown that assimilation of a single profile can partially rectify the incorrectly simulated soil moisture spatial mean and variability. The largest reduction in the root-mean-square error in the soil moisture field varies between 7% and 22%, depending on the soil depth, when assimilating a single complete profile every two days during three months with a single time-invariant covariance correction.

Full access
Yang Lu, Susan C. Steele-Dunne, and Gabriëlle J. M. De Lannoy

Abstract

Surface heat fluxes are vital to hydrological and environmental studies, but mapping them accurately over a large area remains a problem. In this study, brightness temperature (TB) observations or soil moisture retrievals from the NASA Soil Moisture Active Passive (SMAP) mission and land surface temperature (LST) product from the Geostationary Operational Environmental Satellite (GOES) are assimilated together into a coupled water and heat transfer model to improve surface heat flux estimates. A particle filter is used to assimilate SMAP data, while a particle smoothing method is adopted to assimilate GOES LST time series, correcting for both systematic biases via parameter updating and for short-term error via state updating. One experiment assimilates SMAP TB at horizontal polarization and GOES LST, a second experiment assimilates SMAP TB at vertical polarization and GOES LST, and a third experiment assimilates SMAP soil moisture retrievals along with GOES LST. The aim is to examine if the assimilation of physically consistent TB and LST observations could yield improved surface heat flux estimates. It is demonstrated that all three assimilation experiments improved flux estimates compared to a no-assimilation case. Assimilating TB data tends to produce smaller bias in soil moisture estimates compared to assimilating soil moisture retrievals, but the estimates are influenced by the respective bias correction approaches. Despite the differences in soil moisture estimates, the flux estimates from different assimilation experiments are in general very similar.

Free access
Leila Farhadi, Rolf H. Reichle, Gabriëlle J. M. De Lannoy, and John S. Kimball

Abstract

The land surface freeze–thaw (F/T) state plays a key role in the hydrological and carbon cycles and thus affects water and energy exchanges and vegetation productivity at the land surface. In this study, an F/T assimilation algorithm was developed for the NASA Goddard Earth Observing System, version 5 (GEOS-5), modeling and assimilation framework. The algorithm includes a newly developed observation operator that diagnoses the landscape F/T state in the GEOS-5 Catchment land surface model. The F/T analysis is a rule-based approach that adjusts Catchment model state variables in response to binary F/T observations, while also considering forecast and observation errors. A regional observing system simulation experiment was conducted using synthetically generated F/T observations. The assimilation of perfect (error free) F/T observations reduced the root-mean-square errors (RMSEs) of surface temperature and soil temperature by 0.206° and 0.061°C, respectively, when compared to model estimates (equivalent to a relative RMSE reduction of 6.7% and 3.1%, respectively). For a maximum classification error CEmax of 10% in the synthetic F/T observations, the F/T assimilation reduced the RMSE of surface temperature and soil temperature by 0.178° and 0.036°C, respectively. For CEmax = 20%, the F/T assimilation still reduces the RMSE of model surface temperature estimates by 0.149°C but yields no improvement over the model soil temperature estimates. The F/T assimilation scheme is being developed to exploit planned F/T products from the NASA Soil Moisture Active Passive (SMAP) mission.

Full access
Gabriëlle J. M. De Lannoy, Rolf H. Reichle, and Valentijn R. N. Pauwels

Abstract

A zero-order (tau-omega) microwave radiative transfer model (RTM) is coupled to the Goddard Earth Observing System, version 5 (GEOS-5) catchment land surface model in preparation for the future assimilation of global brightness temperatures (Tb) from the L-band (1.4 GHz) Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions. Simulations using literature values for the RTM parameters result in Tb biases of 10–50 K against SMOS observations. Multiangular SMOS observations during nonfrozen conditions from 1 July 2011 to 1 July 2012 are used to calibrate parameters related to the microwave roughness h, vegetation opacity τ and/or scattering albedo ω separately for each observed 36-km land grid cell. A particle swarm optimization is used to minimize differences in the long-term (climatological) mean values and standard deviations between SMOS observations and simulations, without attempting to reduce the shorter-term (seasonal to daily) errors. After calibration, global Tb simulations for the validation year (1 July 2010 to 1 July 2011) are largely unbiased for multiple incidence angles and both H and V polarization [e.g., the global average absolute difference is 2.7 K for TbH(42.5°), i.e., at 42.5° incidence angle]. The calibrated parameter values depend to some extent on the specific land surface conditions simulated by the GEOS-5 system and on the scale of the SMOS observations, but they also show realistic spatial distributions. Aggregating the calibrated parameter values by vegetation class prior to using them in the RTM maintains low global biases but increases local biases [e.g., the global average absolute difference is 7.1 K for TbH(42.5°)].

Restricted access
Anne Felsberg, Gabriëlle J. M. De Lannoy, Manuela Girotto, Jean Poesen, Rolf H. Reichle, and Thomas Stanley

Abstract

This global feasibility study assesses the potential of coarse-scale, gridded soil water estimates for the probabilistic modeling of hydrologically-triggered landslides, using Soil Moisture Ocean Salinity (SMOS), Soil Moisture Active Passive (SMAP) and Gravity Recovery and Climate Experiment (GRACE) remote sensing data, Catchment Land Surface Model (CLSM) simulations and six data products based on the assimilation of SMOS, SMAP, and/or GRACE observations into CLSM. SMOS or SMAP observations (~40-km resolution) are only available for less than 20% of the globally reported landslide events, because they are intermittent and uncertain in regions with complex terrain. GRACE terrestrial water storage estimates include 75% of the reported landslides but have coarse spatial and temporal resolutions (monthly, ~300-km). CLSM soil water simulations have the added advantage of complete spatial and temporal coverage, and are found to be able to distinguish between “stable slope” (no landslide) conditions and landslide-inducing conditions in a probabilistic way. Assimilating SMOS and/or GRACE data increases the landslide probability estimates based on soil water percentiles for the reported landslides, relative to model-only estimates at 36-km resolution for the period 2011-2016, unless the CLSM model-only soil water content is already high (≥ 50th percentile). The SMAP Level 4 data assimilation product (at 9-km resolution, period 2015-2019) more generally updates the soil water conditions towards higher landslide probabilities for the reported landslides, but is similar to model-only estimates for the majority of landslides where SMAP data cannot easily be converted to soil moisture owing to complex terrain.

Restricted access
Qing Liu, Rolf H. Reichle, Rajat Bindlish, Michael H. Cosh, Wade T. Crow, Richard de Jeu, Gabrielle J. M. De Lannoy, George J. Huffman, and Thomas J. Jackson

Abstract

The contributions of precipitation and soil moisture observations to soil moisture skill in a land data assimilation system are assessed. Relative to baseline estimates from the Modern Era Retrospective-analysis for Research and Applications (MERRA), the study investigates soil moisture skill derived from (i) model forcing corrections based on large-scale, gauge- and satellite-based precipitation observations and (ii) assimilation of surface soil moisture retrievals from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). Soil moisture skill (defined as the anomaly time series correlation coefficient R) is assessed using in situ observations in the continental United States at 37 single-profile sites within the Soil Climate Analysis Network (SCAN) for which skillful AMSR-E retrievals are available and at 4 USDA Agricultural Research Service (“CalVal”) watersheds with high-quality distributed sensor networks that measure soil moisture at the scale of land model and satellite estimates. The average skill of AMSR-E retrievals is R = 0.42 versus SCAN and R = 0.55 versus CalVal measurements. The skill of MERRA surface and root-zone soil moisture is R = 0.43 and R = 0.47, respectively, versus SCAN measurements. MERRA surface moisture skill is R = 0.56 versus CalVal measurements. Adding information from precipitation observations increases (surface and root zone) soil moisture skills by ΔR ~ 0.06. Assimilating AMSR-E retrievals increases soil moisture skills by ΔR ~ 0.08. Adding information from both sources increases soil moisture skills by ΔR ~ 0.13, which demonstrates that precipitation corrections and assimilation of satellite soil moisture retrievals contribute important and largely independent amounts of information.

Full access
Rolf H. Reichle, Randal D. Koster, Gabriëlle J. M. De Lannoy, Barton A. Forman, Qing Liu, Sarith P. P. Mahanama, and Ally Touré

Abstract

The Modern-Era Retrospective Analysis for Research and Applications (MERRA) is a state-of-the-art reanalysis that provides, in addition to atmospheric fields, global estimates of soil moisture, latent heat flux, snow, and runoff for 1979–present. This study introduces a supplemental and improved set of land surface hydrological fields (“MERRA-Land”) generated by rerunning a revised version of the land component of the MERRA system. Specifically, the MERRA-Land estimates benefit from corrections to the precipitation forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised parameter values in the rainfall interception model, changes that effectively correct for known limitations in the MERRA surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against observations and compared to the skill of the state-of-the-art ECMWF Re-Analysis-Interim (ERA-I). MERRA-Land and ERA-I root zone soil moisture skills (against in situ observations at 85 U.S. stations) are comparable and significantly greater than that of MERRA. Throughout the Northern Hemisphere, MERRA and MERRA-Land agree reasonably well with in situ snow depth measurements (from 583 stations) and with snow water equivalent from an independent analysis. Runoff skill (against naturalized stream flow observations from 18 U.S. basins) of MERRA and MERRA-Land is typically higher than that of ERA-I. With a few exceptions, the MERRA-Land data appear more accurate than the original MERRA estimates and are thus recommended for those interested in using MERRA output for land surface hydrological studies.

Full access
Rolf H. Reichle, Qing Liu, Joseph V. Ardizzone, Wade T. Crow, Gabrielle J. M. De Lannoy, Jianzhi Dong, John S. Kimball, and Randal D. Koster

Abstract

Soil Moisture Active Passive (SMAP) mission L-band brightness temperature (Tb) observations are routinely assimilated into the Catchment land surface model to generate Level-4 soil moisture (L4_SM) estimates of global surface and root-zone soil moisture at 9-km, 3-hourly resolution with ~2.5-day latency. The Catchment model in the L4_SM algorithm is driven with 1/4°, hourly surface meteorological forcing data from the Goddard Earth Observing System (GEOS). Outside of Africa and the high latitudes, GEOS precipitation is corrected using Climate Prediction Center Unified (CPCU) gauge-based, 1/2°, daily precipitation. L4_SM soil moisture was previously shown to improve over land model-only estimates that use CPCU precipitation but no Tb assimilation (CPCU_SIM). Here, we additionally examine the skill of model-only (CTRL) and Tb assimilation-only (SMAP_DA) estimates derived without CPCU precipitation. Soil moisture is assessed versus in situ measurements in well-instrumented regions and globally through the instrumental variable (IV) method using independent soil moisture retrievals from the Advanced Scatterometer. At the in situ locations, SMAP_DA and CPCU_SIM have comparable soil moisture skill improvements relative to CTRL for the unbiased root-mean-square error (surface and root-zone) and correlation metrics (root-zone only). In the global average, SMAP Tb assimilation increases the surface soil moisture anomaly correlation by 0.10–0.11 compared to an increase of 0.02–0.03 from the CPCU-based precipitation corrections. The contrast is particularly strong in central Australia, where CPCU is known to have errors and observation-minus-forecast Tb residuals are larger when CPCU precipitation is used. Validation versus streamflow measurements in the contiguous United States reveals that CPCU precipitation provides most of the skill gained in L4_SM runoff estimates over CTRL.

Restricted access