Search Results
You are looking at 1 - 10 of 60 items for
- Author or Editor: Gang Chen x
- Refine by Access: All Content x
Abstract
The mean meridional circulation of the atmosphere is presented using the mass (more specifically, the pressure corresponding to the mass) above the isentrope of interest as the vertical coordinate. In this vertical coordinate, the mass-weighted mean circulation is exactly balanced by entropy sources and sinks with no eddy flux contribution as in the isentropic coordinate, and the coordinate can be readily generalized to the mass above moist isentropes or other quasi-conservative tracers by construction. The corresponding Eliassen–Palm (EP) flux divergence for the zonal-mean angular momentum is formulated in a hybrid isobaric–isentropic form, extending the conventional transformed Eulerian-mean (TEM) formulation to finite-amplitude nongeostrophic eddies on the sphere. In the small-amplitude limit, the hybrid isobaric–isentropic formulation reduces to the TEM formulation.
Applying to the NCEP–U.S. Department of Energy (DOE) Reanalysis 2, the new formulation resolves the deficiency of the conventional TEM formulation for the near-surface flow, where the isentropic surface intersects the ground, and the mean circulation agrees well with the TEM above the near-surface layer. In the small-amplitude limit, this improvement near the surface can be partially attributed to the isentropic static stability over the isobaric counterpart, as the mass density in the near-surface isentropic layers gradually approaches zero. Also, the mean mass streamfunction can be approximately obtained from the EP flux divergence except for the deep tropics or the near-surface flow, highlighting the dominant control of potential vorticity mixing for the subtropics-to-pole mean circulations. It is then expected to provide a valuable diagnostic framework not only for global circulation theory, but also for atmospheric transport in the troposphere.
Abstract
The mean meridional circulation of the atmosphere is presented using the mass (more specifically, the pressure corresponding to the mass) above the isentrope of interest as the vertical coordinate. In this vertical coordinate, the mass-weighted mean circulation is exactly balanced by entropy sources and sinks with no eddy flux contribution as in the isentropic coordinate, and the coordinate can be readily generalized to the mass above moist isentropes or other quasi-conservative tracers by construction. The corresponding Eliassen–Palm (EP) flux divergence for the zonal-mean angular momentum is formulated in a hybrid isobaric–isentropic form, extending the conventional transformed Eulerian-mean (TEM) formulation to finite-amplitude nongeostrophic eddies on the sphere. In the small-amplitude limit, the hybrid isobaric–isentropic formulation reduces to the TEM formulation.
Applying to the NCEP–U.S. Department of Energy (DOE) Reanalysis 2, the new formulation resolves the deficiency of the conventional TEM formulation for the near-surface flow, where the isentropic surface intersects the ground, and the mean circulation agrees well with the TEM above the near-surface layer. In the small-amplitude limit, this improvement near the surface can be partially attributed to the isentropic static stability over the isobaric counterpart, as the mass density in the near-surface isentropic layers gradually approaches zero. Also, the mean mass streamfunction can be approximately obtained from the EP flux divergence except for the deep tropics or the near-surface flow, highlighting the dominant control of potential vorticity mixing for the subtropics-to-pole mean circulations. It is then expected to provide a valuable diagnostic framework not only for global circulation theory, but also for atmospheric transport in the troposphere.
Abstract
Interannual variability of the winter atmospheric river (AR) activities over the Northern Hemisphere is investigated. The leading modes of AR variability over the North Pacific and North Atlantic are first identified and characterized. Over the Pacific, the first mode is characterized by a dipole structure with enhanced AR frequency along the AR peak region at about 30°N and reduced AR frequency farther north. The second mode exhibits a tripole structure with a narrow band of positive AR anomalies at about 30°N and sandwiched by negative anomalies. Over the Atlantic, the first mode exhibits an equatorward shift of the ARs with positive anomalies and negative anomalies located on the equatorward and poleward side of the AR peak region at about 40°N, respectively. The second mode is associated with the strengthening and eastward extension of the AR peak region, which is sandwiched by negative anomalies. A large ensemble of atmospheric global climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP6), which shows high skill in simulating these modes, is then used to quantify the roles of sea surface temperature (SST) forcing versus internal atmospheric variability in driving the formation of these modes. Results show that SST forcing explains about half of the variance for the Pacific leading modes, while that number drops to about a quarter for the Atlantic leading modes, suggesting higher predictability for the Pacific AR variability. An additional ensemble driven only by observed tropical SST is further utilized to demonstrate the more important role that tropical SST plays in controlling the Pacific AR variability while both tropical and extratropical SST exert comparable influences on the Atlantic AR variability.
Abstract
Interannual variability of the winter atmospheric river (AR) activities over the Northern Hemisphere is investigated. The leading modes of AR variability over the North Pacific and North Atlantic are first identified and characterized. Over the Pacific, the first mode is characterized by a dipole structure with enhanced AR frequency along the AR peak region at about 30°N and reduced AR frequency farther north. The second mode exhibits a tripole structure with a narrow band of positive AR anomalies at about 30°N and sandwiched by negative anomalies. Over the Atlantic, the first mode exhibits an equatorward shift of the ARs with positive anomalies and negative anomalies located on the equatorward and poleward side of the AR peak region at about 40°N, respectively. The second mode is associated with the strengthening and eastward extension of the AR peak region, which is sandwiched by negative anomalies. A large ensemble of atmospheric global climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP6), which shows high skill in simulating these modes, is then used to quantify the roles of sea surface temperature (SST) forcing versus internal atmospheric variability in driving the formation of these modes. Results show that SST forcing explains about half of the variance for the Pacific leading modes, while that number drops to about a quarter for the Atlantic leading modes, suggesting higher predictability for the Pacific AR variability. An additional ensemble driven only by observed tropical SST is further utilized to demonstrate the more important role that tropical SST plays in controlling the Pacific AR variability while both tropical and extratropical SST exert comparable influences on the Atlantic AR variability.
Abstract
Tropospheric transport can be described qualitatively by the slow mean diabatic circulation and rapid isentropic mixing, yet a quantitative understanding of the transport circulation is complicated, as nearly half of the isentropic surfaces in the troposphere frequently intersect the ground. A theoretical framework for the effective isentropic diffusivity of tropospheric transport is presented. Compared with previous isentropic analysis of effective diffusivity, a new diagnostic is introduced to quantify the eddy diffusivity of the near-surface isentropic flow. This diagnostic also links the effective eddy diffusivity directly to a diffusive closure of eddy fluxes through a finite-amplitude wave activity equation.
The theory is examined in a dry primitive equation model on the sphere. It is found that the upper troposphere is characterized by a diffusivity minimum at the jet’s center with enhanced mixing at the jet’s flanks and that the lower troposphere is dominated by stronger mixing throughout the baroclinic zone. This structure of isentropic diffusivity is generally consistent with the diffusivity obtained from the geostrophic component of the flow. Furthermore, the isentropic diffusivity agrees broadly with the tracer equivalent length obtained from either a spectral diffusion scheme or a semi-Lagrangian advection scheme, indicating that the effective diffusivity of tropospheric transport is largely dictated by large-scale stirring rather than details of the small-scale diffusion acting on the tracers.
Abstract
Tropospheric transport can be described qualitatively by the slow mean diabatic circulation and rapid isentropic mixing, yet a quantitative understanding of the transport circulation is complicated, as nearly half of the isentropic surfaces in the troposphere frequently intersect the ground. A theoretical framework for the effective isentropic diffusivity of tropospheric transport is presented. Compared with previous isentropic analysis of effective diffusivity, a new diagnostic is introduced to quantify the eddy diffusivity of the near-surface isentropic flow. This diagnostic also links the effective eddy diffusivity directly to a diffusive closure of eddy fluxes through a finite-amplitude wave activity equation.
The theory is examined in a dry primitive equation model on the sphere. It is found that the upper troposphere is characterized by a diffusivity minimum at the jet’s center with enhanced mixing at the jet’s flanks and that the lower troposphere is dominated by stronger mixing throughout the baroclinic zone. This structure of isentropic diffusivity is generally consistent with the diffusivity obtained from the geostrophic component of the flow. Furthermore, the isentropic diffusivity agrees broadly with the tracer equivalent length obtained from either a spectral diffusion scheme or a semi-Lagrangian advection scheme, indicating that the effective diffusivity of tropospheric transport is largely dictated by large-scale stirring rather than details of the small-scale diffusion acting on the tracers.
Abstract
The role of extratropical waves in the tropical upwelling branch of the Brewer–Dobson circulation is investigated in an idealized model of the stratosphere and troposphere. To simulate different stratospheric seasonal cycles of planetary waves in the two hemispheres, seasonally varying radiative heating is imposed only in the stratosphere, and surface topographic forcing is prescribed only in the Northern Hemisphere (NH). A zonally symmetric version of the same model is used to diagnose the effects of different wavenumbers and different regions of the total forcing on tropical stratospheric upwelling.
The simple configuration can simulate a reasonable seasonal cycle of the tropical upwelling in the lower stratosphere with a stronger amplitude in January (NH midwinter) than in July (NH midsummer), as in the observations. It is shown that the seasonal cycle of stratospheric planetary waves and tropical upwelling responds nonlinearly to the strength of the tropospheric forcing, with a midwinter maximum under strong NH-like tropospheric forcing and double peaks in the fall and spring under weak Southern Hemisphere (SH)-like forcing. The planetary wave component of the total forcing can approximately reproduce the seasonal cycle of tropical stratospheric upwelling in the zonally symmetric model.
The zonally symmetric model further demonstrates that the planetary wave forcing in the winter tropical and subtropical stratosphere contributes most to the seasonal cycle of tropical stratospheric upwelling, rather than the high-latitude wave forcing. This suggests that the planetary wave forcing, prescribed mostly in the extratropics in the model, has to propagate equatorward into the subtropical latitudes to induce sufficient tropical upwelling. Another interesting finding is that the planetary waves in the summer lower stratosphere can drive a shallow residual circulation rising in the subtropics and subsiding in the extratropics.
Abstract
The role of extratropical waves in the tropical upwelling branch of the Brewer–Dobson circulation is investigated in an idealized model of the stratosphere and troposphere. To simulate different stratospheric seasonal cycles of planetary waves in the two hemispheres, seasonally varying radiative heating is imposed only in the stratosphere, and surface topographic forcing is prescribed only in the Northern Hemisphere (NH). A zonally symmetric version of the same model is used to diagnose the effects of different wavenumbers and different regions of the total forcing on tropical stratospheric upwelling.
The simple configuration can simulate a reasonable seasonal cycle of the tropical upwelling in the lower stratosphere with a stronger amplitude in January (NH midwinter) than in July (NH midsummer), as in the observations. It is shown that the seasonal cycle of stratospheric planetary waves and tropical upwelling responds nonlinearly to the strength of the tropospheric forcing, with a midwinter maximum under strong NH-like tropospheric forcing and double peaks in the fall and spring under weak Southern Hemisphere (SH)-like forcing. The planetary wave component of the total forcing can approximately reproduce the seasonal cycle of tropical stratospheric upwelling in the zonally symmetric model.
The zonally symmetric model further demonstrates that the planetary wave forcing in the winter tropical and subtropical stratosphere contributes most to the seasonal cycle of tropical stratospheric upwelling, rather than the high-latitude wave forcing. This suggests that the planetary wave forcing, prescribed mostly in the extratropics in the model, has to propagate equatorward into the subtropical latitudes to induce sufficient tropical upwelling. Another interesting finding is that the planetary waves in the summer lower stratosphere can drive a shallow residual circulation rising in the subtropics and subsiding in the extratropics.
Abstract
An idealized atmospheric model is employed to quantify the strength of the eddy feedback and the persistence of the zonal index. The strength of the surface frictional damping on the zonal index is varied, and an external zonal momentum forcing is included to compensate for the momentum change associated with the friction change such that the climatological jet latitude and shape are unchanged.
The model can generate a nearly identical climatology and leading mode of the zonal mean zonal wind for different frictional damping rates, except when the jet undergoes a regime transition. For those experiments without a regime transition, as the surface friction is increased, the strength of eddy feedback is enhanced but the zonal index becomes less persistent. A simple feedback model suggests that the e-folding decorrelation time scale of the zonal index can be determined by the frictional damping rate and the strength of eddy feedback. The strength of eddy feedback is found to be related to the instantaneous vertical wind shears near the surface controlled by the frictional damping. Furthermore, the climate response to an external zonal torque is proportional to the decorrelation time scale, although the simple prediction used here overestimates the climate response by a factor of 2.
Abstract
An idealized atmospheric model is employed to quantify the strength of the eddy feedback and the persistence of the zonal index. The strength of the surface frictional damping on the zonal index is varied, and an external zonal momentum forcing is included to compensate for the momentum change associated with the friction change such that the climatological jet latitude and shape are unchanged.
The model can generate a nearly identical climatology and leading mode of the zonal mean zonal wind for different frictional damping rates, except when the jet undergoes a regime transition. For those experiments without a regime transition, as the surface friction is increased, the strength of eddy feedback is enhanced but the zonal index becomes less persistent. A simple feedback model suggests that the e-folding decorrelation time scale of the zonal index can be determined by the frictional damping rate and the strength of eddy feedback. The strength of eddy feedback is found to be related to the instantaneous vertical wind shears near the surface controlled by the frictional damping. Furthermore, the climate response to an external zonal torque is proportional to the decorrelation time scale, although the simple prediction used here overestimates the climate response by a factor of 2.
Abstract
A model is developed to explain the observation made in several laboratory experiments that short wind-generated waves are suppressed by a train of long, mechanically generated waves. A sheltering mechanism is responsible for generation of the short wind waves, by which wave growth is proportional to the local turbulent wind stress. Hence, if the turbulent wind stress near the surface is reduced by the long wave, then the short wind wave amplitude, and hence also the energy in the short waves at a given fetch, is lower than in the absence of long wave. A quantitative model of this process is formulated to examine the ratios of the growth rate and the total energy density of wind waves with and without a long wave, which is shown to agree reasonably well with the laboratory experiments. The model also explains why this suppression of wind waves by a very long swell is not observed in the ocean where the effects of swell on wind waves are extremely difficult to detect. In the model, the reduction in the turbulent wind stress by the long wave is largest for small values of C L /u* (where C L is the phase speed of the long wave and u* is the friction velocity of the wind). When this ratio is larger than about 25 (typical of ocean swell), both the reduction of the turbulent wind stress by the long wave and, consequently, the reduction in the total energy density of the wind waves are very small, which explains why this phenomenon has not yet been observed on the ocean.
Abstract
A model is developed to explain the observation made in several laboratory experiments that short wind-generated waves are suppressed by a train of long, mechanically generated waves. A sheltering mechanism is responsible for generation of the short wind waves, by which wave growth is proportional to the local turbulent wind stress. Hence, if the turbulent wind stress near the surface is reduced by the long wave, then the short wind wave amplitude, and hence also the energy in the short waves at a given fetch, is lower than in the absence of long wave. A quantitative model of this process is formulated to examine the ratios of the growth rate and the total energy density of wind waves with and without a long wave, which is shown to agree reasonably well with the laboratory experiments. The model also explains why this suppression of wind waves by a very long swell is not observed in the ocean where the effects of swell on wind waves are extremely difficult to detect. In the model, the reduction in the turbulent wind stress by the long wave is largest for small values of C L /u* (where C L is the phase speed of the long wave and u* is the friction velocity of the wind). When this ratio is larger than about 25 (typical of ocean swell), both the reduction of the turbulent wind stress by the long wave and, consequently, the reduction in the total energy density of the wind waves are very small, which explains why this phenomenon has not yet been observed on the ocean.
Abstract
This paper explores the tropospheric jet shift to a prescribed zonal torque in an idealized dry atmospheric model with high stratospheric resolution. The jet moves in opposite directions for torques on the jet’s equatorward and poleward flanks in the troposphere. This can be explained by considering how the critical latitudes for wave activity absorption change, where the eastward propagation speed of eddies equals the background zonal mean zonal wind. While the increased zonal winds in the subtropics allow the midlatitude eddies to propagate farther into the tropics and result in the equatorward shift in the critical latitudes, the increased winds in the midlatitudes accelerate the eastward eddy phase speeds and lead to the poleward shift in the critical latitudes.
In contrast, the jet moves poleward when a westerly torque is placed in the extratropical stratosphere irrespective of the forcing latitude. The downward penetration of zonal winds to the troposphere displays a poleward slope for the subtropical torque, an equatorward slope for the high-latitude torque, and less tilting for the midlatitude torques. The stratospheric eddies play a key role in transferring zonal wind anomalies downward into the troposphere. It is argued that these stratospheric zonal wind anomalies can affect the tropospheric jet by altering the eastward propagation of tropospheric eddies. Additionally, the zonal wind response to a subtropical zonal torque in this idealized model is of value in understanding the tropospheric jet sensitivity to the orographic gravity wave drag parameterization in a realistic climate model.
Abstract
This paper explores the tropospheric jet shift to a prescribed zonal torque in an idealized dry atmospheric model with high stratospheric resolution. The jet moves in opposite directions for torques on the jet’s equatorward and poleward flanks in the troposphere. This can be explained by considering how the critical latitudes for wave activity absorption change, where the eastward propagation speed of eddies equals the background zonal mean zonal wind. While the increased zonal winds in the subtropics allow the midlatitude eddies to propagate farther into the tropics and result in the equatorward shift in the critical latitudes, the increased winds in the midlatitudes accelerate the eastward eddy phase speeds and lead to the poleward shift in the critical latitudes.
In contrast, the jet moves poleward when a westerly torque is placed in the extratropical stratosphere irrespective of the forcing latitude. The downward penetration of zonal winds to the troposphere displays a poleward slope for the subtropical torque, an equatorward slope for the high-latitude torque, and less tilting for the midlatitude torques. The stratospheric eddies play a key role in transferring zonal wind anomalies downward into the troposphere. It is argued that these stratospheric zonal wind anomalies can affect the tropospheric jet by altering the eastward propagation of tropospheric eddies. Additionally, the zonal wind response to a subtropical zonal torque in this idealized model is of value in understanding the tropospheric jet sensitivity to the orographic gravity wave drag parameterization in a realistic climate model.
Abstract
The mechanisms of the atmospheric response to climate forcing are analyzed using an example of uniform SST warming in an idealized aquaplanet model. A 200-member ensemble of experiments is conducted with an instantaneous uniform SST warming. The zonal mean circulation changes display a rapid poleward shift in the midlatitude eddy-driven westerlies and the edge of the Hadley cell circulation and a slow equatorward contraction of the circulation in the deep tropics. The shift of the poleward edge of the Hadley cell is predominantly controlled by the eddy momentum flux. It also shifts the eddy-driven westerlies against the surface friction, at a rate much faster than the expectation from the natural variability of the eddy-driven jet (i.e., the e-folding time scale of the annular mode), with much less feedback between the eddies and zonal flow.
The transient eddy–zonal flow interactions are delineated using a newly developed finite-amplitude wave activity diagnostic of Nakamura. Applying it to the transient ensemble response to uniform SST warming reveals that the eddy-driven westerlies are shifted poleward by permitting more upward wave propagation in the middle and upper troposphere rather than reducing the lower-tropospheric baroclinicity. The increased upward wave propagation is attributed to a reduction in eddy dissipation of wave activity as a result of a weaker meridional potential vorticity (PV) gradient. The reduction allows more waves to propagate away from the latitudes of baroclinic generation, which, in turn, leads to more poleward momentum flux and a poleward shift of eddy-driven winds and Hadley cell edge.
Abstract
The mechanisms of the atmospheric response to climate forcing are analyzed using an example of uniform SST warming in an idealized aquaplanet model. A 200-member ensemble of experiments is conducted with an instantaneous uniform SST warming. The zonal mean circulation changes display a rapid poleward shift in the midlatitude eddy-driven westerlies and the edge of the Hadley cell circulation and a slow equatorward contraction of the circulation in the deep tropics. The shift of the poleward edge of the Hadley cell is predominantly controlled by the eddy momentum flux. It also shifts the eddy-driven westerlies against the surface friction, at a rate much faster than the expectation from the natural variability of the eddy-driven jet (i.e., the e-folding time scale of the annular mode), with much less feedback between the eddies and zonal flow.
The transient eddy–zonal flow interactions are delineated using a newly developed finite-amplitude wave activity diagnostic of Nakamura. Applying it to the transient ensemble response to uniform SST warming reveals that the eddy-driven westerlies are shifted poleward by permitting more upward wave propagation in the middle and upper troposphere rather than reducing the lower-tropospheric baroclinicity. The increased upward wave propagation is attributed to a reduction in eddy dissipation of wave activity as a result of a weaker meridional potential vorticity (PV) gradient. The reduction allows more waves to propagate away from the latitudes of baroclinic generation, which, in turn, leads to more poleward momentum flux and a poleward shift of eddy-driven winds and Hadley cell edge.
Abstract
Studies have suggested that the persistence in the meridional vacillation of the midlatitude jet (i.e., annular mode time scale) in comprehensive climate models is related to the model biases in climatological jet latitude, with important implications for projections of future climates and midlatitude weather events. Through the use of the recently developed finite-amplitude wave activity formalism and feedback quantifying techniques, this paper has quantified the role of barotropic and baroclinic eddy feedbacks in annular mode time scales using an idealized dry atmospheric model.
The eddy–mean flow interaction that characterizes the persistent anomalous state of the midlatitude jet depends on processes associated with the lower-tropospheric source of vertically propagating Rossby waves, baroclinic mechanisms, and processes associated with upper-tropospheric wave propagation and breaking, barotropic mechanisms. A variety of climate change–like thermal forcings are used to generate a range of meridional shifts in the midlatitude eddy-driven jet. The idealized model shows a reduction in annular mode time scale associated with an increase in jet latitude, similar to comprehensive climate models. This decrease in time scale can be attributed to a similar decrease in the strength of the barotropic eddy feedback, which, in the positive phase of the annular mode, is characterized by anomalous potential vorticity (PV) mixing on the equatorward flank of the climatological jet. The decrease in subtropical PV mixing is, in turn, associated with a stronger subtropical jet as the eddy-driven jet is more distant from the subtropics. These results highlight the importance of subtropical eddy–mean flow interactions for the persistence of an eddy-driven jet.
Abstract
Studies have suggested that the persistence in the meridional vacillation of the midlatitude jet (i.e., annular mode time scale) in comprehensive climate models is related to the model biases in climatological jet latitude, with important implications for projections of future climates and midlatitude weather events. Through the use of the recently developed finite-amplitude wave activity formalism and feedback quantifying techniques, this paper has quantified the role of barotropic and baroclinic eddy feedbacks in annular mode time scales using an idealized dry atmospheric model.
The eddy–mean flow interaction that characterizes the persistent anomalous state of the midlatitude jet depends on processes associated with the lower-tropospheric source of vertically propagating Rossby waves, baroclinic mechanisms, and processes associated with upper-tropospheric wave propagation and breaking, barotropic mechanisms. A variety of climate change–like thermal forcings are used to generate a range of meridional shifts in the midlatitude eddy-driven jet. The idealized model shows a reduction in annular mode time scale associated with an increase in jet latitude, similar to comprehensive climate models. This decrease in time scale can be attributed to a similar decrease in the strength of the barotropic eddy feedback, which, in the positive phase of the annular mode, is characterized by anomalous potential vorticity (PV) mixing on the equatorward flank of the climatological jet. The decrease in subtropical PV mixing is, in turn, associated with a stronger subtropical jet as the eddy-driven jet is more distant from the subtropics. These results highlight the importance of subtropical eddy–mean flow interactions for the persistence of an eddy-driven jet.
ABSTRACT
Projected changes in the frequency of major precipitation accumulations (hundreds of millimeters), integrated over rainfall events, over land in the late twenty-first century are analyzed in the Community Earth System Model (CESM) Large Ensemble, based on the RCP8.5 scenario. Accumulation sizes are sorted by the local average recurrence interval (ARI), ranging from 0.1 to 100 years, for the current and projected late-twenty-first-century climates separately. For all ARIs, the frequency of exceedance of the given accumulation size increases in the future climate almost everywhere, especially for the largest accumulations, with the 100-yr accumulation becoming about 3 times more frequent, averaged over the global land area. The moisture budget allows the impacts of individual factors—moisture, circulation, and event duration—to be isolated. In the tropics, both moisture and circulation cause large future increases, enhancing the 100-yr accumulation by 23% and 13% (average over tropical land), and are individually responsible for making the current-climate 100-yr accumulation 2.7 times and 1.8 times more frequent, but effects of shorter durations slightly offset these effects. In the midlatitudes, large accumulations become about 5% longer in duration, but are predominantly controlled by enhanced moisture, with the 100-yr accumulation (land average) becoming 2.4 times more frequent, and 2.2 times more frequent due to moisture increases alone. In some monsoon-affected regions, the 100-yr accumulation becomes more than 5 times as frequent, where circulation changes are the most impactful factor. These projections indicate that changing duration of events is a relatively minor effect on changing accumulations, their future enhancement being dominated by enhanced intensity (the combination of moisture and circulation).
ABSTRACT
Projected changes in the frequency of major precipitation accumulations (hundreds of millimeters), integrated over rainfall events, over land in the late twenty-first century are analyzed in the Community Earth System Model (CESM) Large Ensemble, based on the RCP8.5 scenario. Accumulation sizes are sorted by the local average recurrence interval (ARI), ranging from 0.1 to 100 years, for the current and projected late-twenty-first-century climates separately. For all ARIs, the frequency of exceedance of the given accumulation size increases in the future climate almost everywhere, especially for the largest accumulations, with the 100-yr accumulation becoming about 3 times more frequent, averaged over the global land area. The moisture budget allows the impacts of individual factors—moisture, circulation, and event duration—to be isolated. In the tropics, both moisture and circulation cause large future increases, enhancing the 100-yr accumulation by 23% and 13% (average over tropical land), and are individually responsible for making the current-climate 100-yr accumulation 2.7 times and 1.8 times more frequent, but effects of shorter durations slightly offset these effects. In the midlatitudes, large accumulations become about 5% longer in duration, but are predominantly controlled by enhanced moisture, with the 100-yr accumulation (land average) becoming 2.4 times more frequent, and 2.2 times more frequent due to moisture increases alone. In some monsoon-affected regions, the 100-yr accumulation becomes more than 5 times as frequent, where circulation changes are the most impactful factor. These projections indicate that changing duration of events is a relatively minor effect on changing accumulations, their future enhancement being dominated by enhanced intensity (the combination of moisture and circulation).