Search Results

You are looking at 1 - 10 of 62 items for

  • Author or Editor: Gang Chen x
  • Refine by Access: All Content x
Clear All Modify Search
Gang Chen

Abstract

The mean meridional circulation of the atmosphere is presented using the mass (more specifically, the pressure corresponding to the mass) above the isentrope of interest as the vertical coordinate. In this vertical coordinate, the mass-weighted mean circulation is exactly balanced by entropy sources and sinks with no eddy flux contribution as in the isentropic coordinate, and the coordinate can be readily generalized to the mass above moist isentropes or other quasi-conservative tracers by construction. The corresponding Eliassen–Palm (EP) flux divergence for the zonal-mean angular momentum is formulated in a hybrid isobaric–isentropic form, extending the conventional transformed Eulerian-mean (TEM) formulation to finite-amplitude nongeostrophic eddies on the sphere. In the small-amplitude limit, the hybrid isobaric–isentropic formulation reduces to the TEM formulation.

Applying to the NCEP–U.S. Department of Energy (DOE) Reanalysis 2, the new formulation resolves the deficiency of the conventional TEM formulation for the near-surface flow, where the isentropic surface intersects the ground, and the mean circulation agrees well with the TEM above the near-surface layer. In the small-amplitude limit, this improvement near the surface can be partially attributed to the isentropic static stability over the isobaric counterpart, as the mass density in the near-surface isentropic layers gradually approaches zero. Also, the mean mass streamfunction can be approximately obtained from the EP flux divergence except for the deep tropics or the near-surface flow, highlighting the dominant control of potential vorticity mixing for the subtropics-to-pole mean circulations. It is then expected to provide a valuable diagnostic framework not only for global circulation theory, but also for atmospheric transport in the troposphere.

Full access
Gang Chen
and
Lantao Sun

Abstract

The role of extratropical waves in the tropical upwelling branch of the Brewer–Dobson circulation is investigated in an idealized model of the stratosphere and troposphere. To simulate different stratospheric seasonal cycles of planetary waves in the two hemispheres, seasonally varying radiative heating is imposed only in the stratosphere, and surface topographic forcing is prescribed only in the Northern Hemisphere (NH). A zonally symmetric version of the same model is used to diagnose the effects of different wavenumbers and different regions of the total forcing on tropical stratospheric upwelling.

The simple configuration can simulate a reasonable seasonal cycle of the tropical upwelling in the lower stratosphere with a stronger amplitude in January (NH midwinter) than in July (NH midsummer), as in the observations. It is shown that the seasonal cycle of stratospheric planetary waves and tropical upwelling responds nonlinearly to the strength of the tropospheric forcing, with a midwinter maximum under strong NH-like tropospheric forcing and double peaks in the fall and spring under weak Southern Hemisphere (SH)-like forcing. The planetary wave component of the total forcing can approximately reproduce the seasonal cycle of tropical stratospheric upwelling in the zonally symmetric model.

The zonally symmetric model further demonstrates that the planetary wave forcing in the winter tropical and subtropical stratosphere contributes most to the seasonal cycle of tropical stratospheric upwelling, rather than the high-latitude wave forcing. This suggests that the planetary wave forcing, prescribed mostly in the extratropics in the model, has to propagate equatorward into the subtropical latitudes to induce sufficient tropical upwelling. Another interesting finding is that the planetary waves in the summer lower stratosphere can drive a shallow residual circulation rising in the subtropics and subsiding in the extratropics.

Full access
Gang Chen
and
Alan Plumb

Abstract

Tropospheric transport can be described qualitatively by the slow mean diabatic circulation and rapid isentropic mixing, yet a quantitative understanding of the transport circulation is complicated, as nearly half of the isentropic surfaces in the troposphere frequently intersect the ground. A theoretical framework for the effective isentropic diffusivity of tropospheric transport is presented. Compared with previous isentropic analysis of effective diffusivity, a new diagnostic is introduced to quantify the eddy diffusivity of the near-surface isentropic flow. This diagnostic also links the effective eddy diffusivity directly to a diffusive closure of eddy fluxes through a finite-amplitude wave activity equation.

The theory is examined in a dry primitive equation model on the sphere. It is found that the upper troposphere is characterized by a diffusivity minimum at the jet’s center with enhanced mixing at the jet’s flanks and that the lower troposphere is dominated by stronger mixing throughout the baroclinic zone. This structure of isentropic diffusivity is generally consistent with the diffusivity obtained from the geostrophic component of the flow. Furthermore, the isentropic diffusivity agrees broadly with the tracer equivalent length obtained from either a spectral diffusion scheme or a semi-Lagrangian advection scheme, indicating that the effective diffusivity of tropospheric transport is largely dictated by large-scale stirring rather than details of the small-scale diffusion acting on the tracers.

Full access
Weiming Ma
and
Gang Chen

Abstract

Interannual variability of the winter atmospheric river (AR) activities over the Northern Hemisphere is investigated. The leading modes of AR variability over the North Pacific and North Atlantic are first identified and characterized. Over the Pacific, the first mode is characterized by a dipole structure with enhanced AR frequency along the AR peak region at about 30°N and reduced AR frequency farther north. The second mode exhibits a tripole structure with a narrow band of positive AR anomalies at about 30°N and sandwiched by negative anomalies. Over the Atlantic, the first mode exhibits an equatorward shift of the ARs with positive anomalies and negative anomalies located on the equatorward and poleward side of the AR peak region at about 40°N, respectively. The second mode is associated with the strengthening and eastward extension of the AR peak region, which is sandwiched by negative anomalies. A large ensemble of atmospheric global climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP6), which shows high skill in simulating these modes, is then used to quantify the roles of sea surface temperature (SST) forcing versus internal atmospheric variability in driving the formation of these modes. Results show that SST forcing explains about half of the variance for the Pacific leading modes, while that number drops to about a quarter for the Atlantic leading modes, suggesting higher predictability for the Pacific AR variability. An additional ensemble driven only by observed tropical SST is further utilized to demonstrate the more important role that tropical SST plays in controlling the Pacific AR variability while both tropical and extratropical SST exert comparable influences on the Atlantic AR variability.

Free access
Abraham Solomon
,
Gang Chen
, and
Jian Lu

Abstract

Lagrangian-mean wave activity diagnostics are applied to the nonlinear baroclinic eddy life cycle in a simple general circulation model of the atmosphere. The growth of these instabilities through baroclinic conversion of potential temperature gradients and their subsequent barotropic decay can exhibit two distinct life cycles. One life cycle results in equatorward propagation of the growing eddy, anticyclonic wave breaking, and a poleward shift of the mean jet. The second life cycle is distinguished by limited equatorward propagation and cyclonic wave breaking on the poleward flank of the jet. Using a conservative finite-amplitude, Lagrangian-mean wave activity (negative pseudomomentum) to quantify wave growth and propagation reveals more details about the life cycles than could be discerned from eddy kinetic energy (EKE) or other Eulerian metrics. It is shown that the distribution of pseudomomentum relative to the latitude of the axis of the jet can be used to provide a clear distinction between the two life cycles at an early stage in their development and, hence, a prediction for the subsequent shift of the jet. This suggests that the distribution of pseudomomentum may provide some predictability for the atmospheric annular modes.

Full access
Gang Chen
,
Jian Lu
, and
Lantao Sun

Abstract

The mechanisms of the atmospheric response to climate forcing are analyzed using an example of uniform SST warming in an idealized aquaplanet model. A 200-member ensemble of experiments is conducted with an instantaneous uniform SST warming. The zonal mean circulation changes display a rapid poleward shift in the midlatitude eddy-driven westerlies and the edge of the Hadley cell circulation and a slow equatorward contraction of the circulation in the deep tropics. The shift of the poleward edge of the Hadley cell is predominantly controlled by the eddy momentum flux. It also shifts the eddy-driven westerlies against the surface friction, at a rate much faster than the expectation from the natural variability of the eddy-driven jet (i.e., the e-folding time scale of the annular mode), with much less feedback between the eddies and zonal flow.

The transient eddy–zonal flow interactions are delineated using a newly developed finite-amplitude wave activity diagnostic of Nakamura. Applying it to the transient ensemble response to uniform SST warming reveals that the eddy-driven westerlies are shifted poleward by permitting more upward wave propagation in the middle and upper troposphere rather than reducing the lower-tropospheric baroclinicity. The increased upward wave propagation is attributed to a reduction in eddy dissipation of wave activity as a result of a weaker meridional potential vorticity (PV) gradient. The reduction allows more waves to propagate away from the latitudes of baroclinic generation, which, in turn, leads to more poleward momentum flux and a poleward shift of eddy-driven winds and Hadley cell edge.

Full access
Gang Chen
and
Pablo Zurita-Gotor

Abstract

This paper explores the tropospheric jet shift to a prescribed zonal torque in an idealized dry atmospheric model with high stratospheric resolution. The jet moves in opposite directions for torques on the jet’s equatorward and poleward flanks in the troposphere. This can be explained by considering how the critical latitudes for wave activity absorption change, where the eastward propagation speed of eddies equals the background zonal mean zonal wind. While the increased zonal winds in the subtropics allow the midlatitude eddies to propagate farther into the tropics and result in the equatorward shift in the critical latitudes, the increased winds in the midlatitudes accelerate the eastward eddy phase speeds and lead to the poleward shift in the critical latitudes.

In contrast, the jet moves poleward when a westerly torque is placed in the extratropical stratosphere irrespective of the forcing latitude. The downward penetration of zonal winds to the troposphere displays a poleward slope for the subtropical torque, an equatorward slope for the high-latitude torque, and less tilting for the midlatitude torques. The stratospheric eddies play a key role in transferring zonal wind anomalies downward into the troposphere. It is argued that these stratospheric zonal wind anomalies can affect the tropospheric jet by altering the eastward propagation of tropospheric eddies. Additionally, the zonal wind response to a subtropical zonal torque in this idealized model is of value in understanding the tropospheric jet sensitivity to the orographic gravity wave drag parameterization in a realistic climate model.

Full access
Gang Chen
and
R. Alan Plumb

Abstract

An idealized atmospheric model is employed to quantify the strength of the eddy feedback and the persistence of the zonal index. The strength of the surface frictional damping on the zonal index is varied, and an external zonal momentum forcing is included to compensate for the momentum change associated with the friction change such that the climatological jet latitude and shape are unchanged.

The model can generate a nearly identical climatology and leading mode of the zonal mean zonal wind for different frictional damping rates, except when the jet undergoes a regime transition. For those experiments without a regime transition, as the surface friction is increased, the strength of eddy feedback is enhanced but the zonal index becomes less persistent. A simple feedback model suggests that the e-folding decorrelation time scale of the zonal index can be determined by the frictional damping rate and the strength of eddy feedback. The strength of eddy feedback is found to be related to the instantaneous vertical wind shears near the surface controlled by the frictional damping. Furthermore, the climate response to an external zonal torque is proportional to the decorrelation time scale, although the simple prediction used here overestimates the climate response by a factor of 2.

Full access
Lantao Sun
,
Gang Chen
, and
Jian Lu

Abstract

Although El Niño and global warming are both characterized by warming in the tropical upper troposphere, the latitudinal changes of the Hadley cell edge and midlatitude eddy-driven jet are opposite in sign. Using an idealized dry atmospheric model, the zonal mean circulation changes are investigated with respect to different patterns of tropical warming. Generally speaking, an equatorward shift in circulation takes place in the presence of enhanced tropical temperature gradient or narrow tropical warming, similar to the changes associated with El Niño events. In contrast, the zonal mean atmospheric circulations expand or shift poleward in response to upper-tropospheric warming or broad tropical warming, resembling the changes under future global warming.

The mechanisms underlying these opposite changes in circulation are investigated by comparing the dry dynamical responses to a narrow tropical warming and a broad warming as analogs for El Niño and global warming. When running the idealized model in a zonally symmetric configuration in which the eddy feedback is disabled, both the narrow and broad warmings give rise to an equatorward shift of the subtropical jet. The eddy adjustment is further examined using large ensembles of transient response to a sudden switch-on of the forcing. For both narrow and broad tropical warmings, the jets move equatorward initially. In the subsequent adjustment, the initial equatorward shift is further enhanced and sustained by the low-level baroclinicity under the narrow tropical warming, whereas the initial equatorward shift transitions to a poleward shift associated with altered irreversible mixing of potential vorticity in the upper troposphere in the case of broad warming.

Full access
Huang Yang
,
Lantao Sun
, and
Gang Chen

Abstract

Previous studies have suggested that Southern Hemisphere (SH) summertime trends in the atmospheric circulation in the second half of the twentieth century are mainly driven by stratospheric ozone depletion in spring. Here, the authors show that the pattern and timing of observed trends, characterized by downward propagation of signals, can be approximately captured in an idealized atmospheric global circulation model (AGCM) by imposing ozone depletion–like radiative cooling.

It is further shown that the synoptic eddies dominantly contribute to the transient tropospheric response to polar stratospheric cooling. The authors examine three possible mechanisms on the downward influence of polar stratospheric cooling. The polar stratospheric cooling affects tropospheric synoptic eddies via (i) the direct influences on the lower-stratospheric synoptic eddies, (ii) the planetary wave–induced residual circulation, and (iii) the planetary eddy–synoptic eddy nonlinear interaction. It is argued that the planetary wave–induced residual circulation is not the dominant mechanism and that the planetary eddies and further nonlinear interaction with synoptic eddies are more likely the key to the downward influence of the ozone depletion–like cooling.

Full access