Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Gang Hong x
  • All content x
Clear All Modify Search
Gang Hong, Georg Heygster, Justus Notholt, and Stefan A. Buehler

Abstract

This study surveys interannual to diurnal variations of tropical deep convective clouds and convective overshooting using the Advanced Microwave Sounding Unit B (AMSU-B) aboard the NOAA polar orbiting satellites from 1999 to 2005. The methodology used to detect tropical deep convective clouds is based on the advantage of microwave radiances to penetrate clouds. The major concentrations of tropical deep convective clouds are found over the intertropical convergence zone (ITCZ), the South Pacific convergence zone (SPCZ), tropical Africa, the Indian Ocean, the Indonesia maritime region, and tropical and South America. The geographical distributions are consistent with previous results from infrared-based measurements, but the cloud fractions present in this study are lower. Land–ocean and Northern–Southern Hemisphere (NH–SH) contrasts are found for tropical deep convective clouds. The mean tropical deep convective clouds have a slightly decreasing trend with −0.016% decade−1 in 1999−2005 while the mean convective overshooting has a distinct decreasing trend with −0.142% decade−1. The trends vary with the underlying surface (ocean or land) and with latitude. A secondary ITCZ occurring over the eastern Pacific between 2° and 8°S and only in boreal spring is predominantly found to be associated with cold sea surface temperatures in La Niña years. The seasonal cycles of deep convective cloud and convective overshooting are stronger over land than over ocean. The seasonal migration is pronounced and moves south with the sun from summer to winter and is particularly dramatic over land. The diurnal cycles of deep convective clouds and convective overshooting peak in the early evening and have their minima in the late morning over the tropical land. Over the tropical ocean the diurnal cycles peak in the morning and have their minima in the afternoon to early evening. The diurnal cycles over the NH and SH subtropical regions vary with the seasons. The local times of the maximum and minimum fractions also vary with the seasons. As the detected deep convective cloud fractions are sensitive to the algorithms and satellite sensors used and are influenced by the life cycles of deep convective clouds, the results presented in this study provide information complementary to present tropical deep convective cloud climatologies.

Full access
Gang Hong, Ping Yang, Bryan A. Baum, Andrew J. Heymsfield, and Kuan-Man Xu

Abstract

Climate modeling and prediction require that the parameterization of the radiative effects of ice clouds be as accurate as possible. The radiative properties of ice clouds are highly sensitive to the single-scattering properties of ice particles and ice cloud microphysical properties such as particle habits and size distributions. In this study, parameterizations for shortwave (SW) and longwave (LW) radiative properties of ice clouds are developed for three existing schemes using ice cloud microphysical properties obtained from five field campaigns and broadband-averaged single-scattering properties of nonspherical ice particles as functions of the effective particle size De (defined as 1.5 times the ratio of total volume to total projected area), which include hexagonal solid columns and hollow columns, hexagonal plates, six-branch bullet rosettes, aggregates, and droxtals.

A combination of the discrete ordinates radiative transfer model and a line-by-line model is used to simulate ice cloud radiative forcing (CRF) at both the surface and the top of the atmosphere (TOA) for the three redeveloped parameterization schemes. The differences in CRF for different parameterization schemes are in the range of −5 to 5 W m−2. In general, the large differences in SW and total CRF occur for thick ice clouds, whereas the large differences in LW CRF occur for ice clouds with small ice particles (De less than 20 μm). The redeveloped parameterization schemes are then applied to the radiative transfer models used for climate models. The ice cloud optical and microphysical properties from the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product over a granule and the collocated atmospheric profiles from the Atmospheric Infrared Sounder (AIRS) product are input into these radiative transfer models to compare the differences in CRF between the redeveloped and existing parameterization schemes. Although differences between these schemes are small in the LW CRF, the differences in the SW CRF are quite large.

Full access
Gang Hong, Ping Yang, Bo-Cai Gao, Bryan A. Baum, Yong X. Hu, Michael D. King, and Steven Platnick

Abstract

This study surveys the optical and microphysical properties of high (ice) clouds over the Tropics (30°S–30°N) over a 3-yr period from September 2002 through August 2005. The analyses are based on the gridded level-3 cloud products derived from the measurements acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard both the NASA Earth Observing System Terra and Aqua platforms. The present analysis is based on the MODIS collection-4 data products. The cloud products provide daily, weekly, and monthly mean cloud fraction, cloud optical thickness, cloud effective radius, cloud-top temperature, cloud-top pressure, and cloud effective emissivity, which is defined as the product of cloud emittance and cloud fraction. This study is focused on high-level ice clouds. The MODIS-derived high clouds are classified as cirriform and deep convective clouds using the International Satellite Cloud Climatology Project (ISCCP) classification scheme. Cirriform clouds make up more than 80% of the total high clouds, whereas deep convective clouds account for less than 20% of the total high clouds. High clouds are prevalent over the intertropical convergence zone (ITCZ), the South Pacific convergence zone (SPCZ), tropical Africa, the Indian Ocean, tropical America, and South America. Moreover, land–ocean, morning–afternoon, and summer–winter variations of high cloud properties are also observed.

Full access

Contrails and Induced Cirrus

Optics and Radiation

Ping Yang, Gang Hong, Andrew E. Dessler, Steve S. C. Ou, Kuo-Nan Liou, Patrick Minnis, and Harshvardhan

This paper summarizes the assessment of the current state of knowledge, areas of uncertainties, and recommendations for future efforts, regarding the optical and radiative properties of contrails and contrail cirrus, which have been reported in two detailed subject-specific white papers for the Aviation Climate Change Research Initiative undertaken by the U.S. Federal Aviation Administration. To better estimate the radiative forcing of aircraft-induced cloudiness, there is a pressing need to improve the present understanding of the optical properties of nonspherical ice crystals within contrails and contrail cirrus, and to enhance the global satellite detection and retrieval of these clouds. It is also critical to develop appropriate parameterizations of ice crystal bulk optical properties for climate models on the basis of state-of-the-art scattering simulations and available in situ measurements of ice crystal size and habit distributions within contrails and contrail cirrus. More accurate methods are needed to retrieve the bulk radiative properties of contrails and contrail cirrus to separate natural from anthropogenic ice cloud effects. Such refined techniques should be applied to past and future satellite imagery to develop a contrail climatology that would serve to evaluate contrail radiative forcing more accurately, to determine trends in contrail cirrus, and to guide and validate parameterizations of contrails in numerical weather and climate models. To point the way forward, we recommend four near-term and three long-term research priorities.

Full access
Norman G. Loeb, Ping Yang, Fred G. Rose, Gang Hong, Sunny Sun-Mack, Patrick Minnis, Seiji Kato, Seung-Hee Ham, William L. Smith Jr., Souichiro Hioki, and Guanglin Tang

Abstract

Ice cloud particles exhibit a range of shapes and sizes affecting a cloud’s single-scattering properties. Because they cannot be inferred from passive visible/infrared imager measurements, assumptions about the bulk single-scattering properties of ice clouds are fundamental to satellite cloud retrievals and broadband radiative flux calculations. To examine the sensitivity to ice particle model assumptions, three sets of models are used in satellite imager retrievals of ice cloud fraction, thermodynamic phase, optical depth, effective height, and particle size, and in top-of-atmosphere (TOA) and surface broadband radiative flux calculations. The three ice particle models include smooth hexagonal ice columns (SMOOTH), roughened hexagonal ice columns, and a two-habit model (THM) comprising an ensemble of hexagonal columns and 20-element aggregates. While the choice of ice particle model has a negligible impact on daytime cloud fraction and thermodynamic phase, the global mean ice cloud optical depth retrieved from THM is smaller than from SMOOTH by 2.3 (28%), and the regional root-mean-square difference (RMSD) is 2.8 (32%). Effective radii derived from THM are 3.9 μm (16%) smaller than SMOOTH values and the RMSD is 5.2 μm (21%). In contrast, the regional RMSD in TOA and surface flux between THM and SMOOTH is only 1% in the shortwave and 0.3% in the longwave when a consistent ice particle model is assumed in the cloud property retrievals and forward radiative transfer model calculations. Consequently, radiative fluxes derived using a consistent ice particle model assumption throughout provide a more robust reference for climate model evaluation compared to ice cloud property retrievals.

Open access