Search Results

You are looking at 1 - 10 of 25 items for

  • Author or Editor: Gang Zhang x
  • Refine by Access: All Content x
Clear All Modify Search
Gang Zhang and Ronald B. Smith

Abstract

Summer precipitation over the Western Ghats and its adjacent Arabian Sea is an important component of the Indian monsoon. To advance understanding of the physical processes controlling this regional precipitation, a series of high-resolution convection-permitting simulations were conducted using the Weather Research and Forecasting (WRF) Model. Convection simulated in the WRF Model agrees with TRMM and MODIS satellite estimates. Sensitivity simulations are conducted, by altering topography, latent heating, and sea surface temperature (SST), to quantify the effects of different physical forcing factors. It is helpful to put India’s west coast rainfall systems into three categories with different causes and characteristics. 1) Offshore rainfall is controlled by incoming convective available potential energy (CAPE), the entrainment of midtropospheric dry layer in the monsoon westerlies, and the latent heat flux and SST of the Arabian Sea. It is not triggered by the Western Ghats. When offshore convection is present, it reduces both CAPE and the downwind coastal rainfall. Strong (weak) offshore rainfall is associated with high (low) SSTs in the Arabian Sea, suggested by both observations and sensitivity simulations. 2) Coastal convective rainfall is forced by the coastline roughness, diurnal heating, and the Western Ghats topography. This localized convective rainfall ends abruptly beyond the Western Ghats, producing a rain shadow to the east of the mountains. This deep convection with mixed phase microphysics is the biggest overall rain producer. 3) Orographic stratiform warm rain and drizzle dominate the local precipitation on the crest of the Western Ghats.

Full access
Boer Zhang, Marianna Linz, and Gang Chen

Abstract

The nonnormality of temperature probability distributions and the physics that drive it are important due to their relationships to the frequency of extreme warm and cold events. Here we use a conditional mean framework to explore how horizontal temperature advection and other physical processes work together to control the shape of daily temperature distributions during 1979–2019 in the ERA5 dataset for both JJA and DJF. We demonstrate that the temperature distribution in the middle and high latitudes can largely be linearly explained by the conditional mean horizontal temperature advection with the simple treatment of other processes as a Newtonian relaxation with a spatially variant relaxation time scale and equilibrium temperature. We analyze the role of different transient and stationary components of the horizontal temperature advection in affecting the shape of temperature distributions. The anomalous advection of the stationary temperature gradient has a dominant effect in influencing temperature variance, while both that term and the covariance between anomalous wind and anomalous temperature have significant effects on temperature skewness. While this simple method works well over most of the ocean, the advection–temperature relationship is more complicated over land. We classify land regions with different advection–temperature relationships under our framework, and find that for both seasons the aforementioned linear relationship can explain ∼30% of land area, and can explain either the lower or the upper half of temperature distributions in an additional ∼30% of land area. Identifying the regions where temperature advection explains shapes of temperature distributions well will help us gain more confidence in understanding the future change of temperature distributions and extreme events.

Open access
Pengfei Zhang, Gang Chen, and Yi Ming

Abstract

While there is substantial evidence for tropospheric jet shift and Hadley cell expansion in response to greenhouse gas increases, quantitative assessments of individual mechanisms and feedback for atmospheric circulation changes remain lacking. We present a new forcing–feedback analysis on circulation response to increasing CO2 concentration in an aquaplanet atmospheric model. This forcing–feedback framework explicitly identifies a direct zonal wind response by holding the zonal mean zonal wind exerting on the zonal advection of eddies unchanged, in comparison with the additional feedback induced by the direct response in zonal mean zonal wind. It is shown that the zonal advection feedback accounts for nearly half of the changes to the eddy-driven jet shift and Hadley cell expansion, largely contributing to the subtropical precipitation decline, when the CO2 concentration varies over a range of climates. The direct response in temperature displays the well-known tropospheric warming pattern to CO2 increases, but the feedback exhibits negative signals. The direct response in eddies is characterized by a reduction in upward wave propagation and a poleward shift of midlatitude eddy momentum flux (EMF) convergence, likely due to an increase in static stability from moist thermodynamic adjustment. In contrast, the feedback features a dipole pattern in EMF that further shifts and strengthens midlatitude EMF convergence, resulting from the upper-level zonal wind increase seen in the direct response. Interestingly, the direct response produces an increase in eddy kinetic energy (EKE), but the feedback weakens EKE. Thus, the forcing–feedback framework highlights the distinct effect of zonal mean advecting wind from direct thermodynamic effects in atmospheric response to greenhouse gas increases.

Restricted access
Gang Chen, Yu Nie, and Yang Zhang

Abstract

Large meridional excursions of a jet stream are conducive to blocking and related midlatitude weather extremes, yet the physical mechanism of jet meandering is not well understood. This paper examines the mechanisms of jet meandering in boreal winter through the lens of a potential vorticity (PV)-like tracer advected by reanalysis winds in an advection–diffusion model. As the geometric structure of the tracer displays a compact relationship with PV in observations and permits a linear mapping from tracer to PV at each latitude, jet meandering can be understood by the geometric structure of tracer field that is only a function of prescribed advecting velocities. This one-way dependence of tracer field on advecting velocities provides a new modeling framework to quantify the effects of time mean flow versus transient eddies on the spatiotemporal variability of jet meandering. It is shown that the mapped tracer wave activity resembles the observed spatial pattern and magnitude of PV wave activity for the winter climatology, interannual variability, and blocking-like wave events. The anomalous increase in tracer wave activity for the composite over interannual variability or blocking-like wave events is attributed to weakened composite mean winds, indicating that the low-frequency winds are the leading factor for the overall distributions of wave activity. It is also found that the tracer model underestimates extreme wave activity, likely due to the lack of feedback mechanisms. The implications for the mechanisms of jet meandering in a changing climate are also discussed.

Restricted access
Gang Zhang, Kerry H. Cook, and Edward K. Vizy

Abstract

Convection-permitting simulations at 3-km resolution using a regional climate model are analyzed to improve the understanding of the diurnal cycle of rainfall over West Africa and its underlying physical processes. The warm season of 2006 is used for the model simulations. The model produces an accurate representation of the observed seasonal mean rainfall and lower-troposphere circulation and captures the observed westward propagation of rainfall systems. Most of West Africa has a single diurnal peak of rainfall in the simulations, either in the afternoon or at night, in agreement with observations. However, the number of simulated rainfall systems is greater than observed in association with an overestimation of the initiation of afternoon rainfall over topography. The longevity of the simulated propagating systems is about 30% shorter than is observed, and their propagation speed is nearly 20% faster. The model captures the observed afternoon rainfall peaks associated with elevated topography (e.g., the Jos Plateau). Nocturnal rainfall peaks downstream of the topographic afternoon rainfall are also well simulated. However, these nocturnal rainfall peaks are too widespread, and the model fails to reproduce the observed afternoon rainfall peaks over regions removed from topographic influence. This deficiency is related to a planetary boundary layer that is deeper than observed, elevating unstable profiles and inhibiting afternoon convection. This study concludes that increasing model resolution to convection-permitting space scales significantly improves the diurnal cycle of rainfall compared with the models that parameterize convection, but this is not sufficient to fully resolve the issue, perhaps because other parameterizations remain.

Full access
Yang Zhang, Xiu-Qun Yang, Yu Nie, and Gang Chen

Abstract

Eddy–zonal flow interactions in the annular modes are investigated in this study using a modified beta-plane multilayer quasigeostrophic (QG) channel model. This study shows the different response of high- and low-phase-speed (frequency) eddies to the zonal wind anomalies and suggests a baroclinic mechanism through which the two eddies work symbiotically maintaining the positive eddy feedback in the annular modes. Analysis also indicates that the different roles played by these two eddies in the annular modes are related to the differences in their critical line distributions. Eddies with higher phase speeds experience a low-level critical layer at the center of the jet. They drive the zonal wind anomalies associated with the annular mode but weaken the baroclinicity of the jet in the process. Lower-phase-speed eddies encounter low-level critical lines on the jet flanks. While their momentum fluxes are not as important for the jet shift, they play an important role by restoring the lower-level baroclinicity at the jet center, creating a positive feedback loop with the fast eddies that extends the persistence of the jet shift.

The importance of the lower-level baroclinicity restoration by the low-phase-speed eddies in the annular modes is further demonstrated in sensitivity runs, in which surface friction on eddies is increased to selectively damp the low-phase-speed eddies. For simulations in which the low-phase-speed eddies become inactive, the leading mode of the zonal wind variability shifts from the position fluctuation to a pulsing of the jet intensity. Further studies indicate that the response of the lower-level baroclinicity to the zonal wind anomalies caused by the low-phase-speed eddies can be crucial in maintaining the annular mode–like variations.

Full access
Gang Zhang, Kerry H. Cook, and Edward K. Vizy

Abstract

This study provides an improved understanding of the diurnal cycle of warm season (June–September) rainfall over West Africa, including its underlying physical processes. Rainfall from the Tropical Rainfall Measuring Mission and atmospheric dynamics fields from reanalyses are used to evaluate the 1998–2013 climatology and a case study for 2006.

In both the climatology and the 2006 case study, most regions of West Africa are shown to have a single diurnal peak of rainfall either in the afternoon or at night. Averaging over West Africa produces a diurnal cycle with two peaks, but this type of diurnal cycle is quite atypical on smaller space scales. Rainfall systems are usually generated in the afternoon and propagate westward, lasting into the night. Afternoon rainfall peaks are associated with an unstable lower troposphere. They occur either over topography or in regions undisturbed by nocturnal systems, allowing locally generated instability to dominate. Nocturnal rainfall peaks are associated with the westward propagation of rainfall systems and not generally with local instability. Nocturnal rainfall peaks occur most frequently about 3°–10° of longitude downstream of regions with afternoon rainfall peaks. The diurnal cycle of rainfall is closely associated with the timing of extreme rainfall events.

Full access
Long Wen, Kun Zhao, Guifu Zhang, Su Liu, and Gang Chen

Abstract

Instrumentation limitations on measured raindrop size distributions (DSDs) and their derived relations and physical parameters are studied through a comparison of the DSD measurements during mei-yu season in east China by four collocated instruments, that is, a two-dimensional video disdrometer (2DVD), a vertically pointing Micro Rain Radar (MRR), and two laser-optical OTT Particle Size Velocity (PARSIVEL) disdrometers (first generation: OTT-1; second generation: OTT-2). Among the four instruments, the 2DVD provides the most accurate DSD and drop velocity measurements, so its measured rainfall amount has the best agreement with the reference rain gauge. Other instruments tend to miss more small drops (D < 1 mm), leading to inaccurate DSDs and a lower rainfall amount. The low rainfall estimation becomes significant during heavy rainfall. The impacts of instrument limitations on the microphysical processes (e.g., evaporation and accretion rates) and convective storm morphology are evaluated. This is important especially for mei-yu precipitation, which is dominated by a high concentration of small drops. Hence, the instrument limitations need to be taken into account in both QPE and microphysics parameterization.

Full access
Junyi Xiu, Xianan Jiang, Renhe Zhang, Weina Guan, and Gang Chen

Abstract

Key processes associated with the leading intraseasonal variability mode of wintertime surface air temperature (SAT) over Eurasia and the Arctic region are investigated in this study. Characterized by a dipole distribution in SAT anomalies centered over north Eurasia and the Arctic, respectively, and coherent temperature anomalies vertically extending from the surface to 300 hPa, this leading intraseasonal SAT mode and associated circulation have pronounced influences on global surface temperature anomalies including the East Asian winter monsoon region. By taking advantage of realistic simulations of the intraseasonal SAT mode in a global climate model, it is illustrated that temperature anomalies in the troposphere associated with the leading SAT mode are mainly due to dynamic processes, especially via the horizontal advection of winter mean temperature by intraseasonal circulation. While the cloud–radiative feedback is not critical in sustaining the temperature variability in the troposphere, it is found to play a crucial role in coupling temperature anomalies at the surface and in the free atmosphere through anomalous surface downward longwave radiation. The variability in clouds associated with the intraseasonal SAT mode is closely linked to moisture anomalies generated by similar advective processes as for temperature anomalies. Model experiments suggest that this leading intraseasonal SAT mode can be sustained by internal atmospheric processes in the troposphere over the mid- to high latitudes by excluding forcings from Arctic sea ice variability, tropical convective variability, and the stratospheric processes.

Restricted access
Yongming Wang, Shanhong Gao, Gang Fu, Jilin Sun, and Suping Zhang

Abstract

An extended three-dimensional variational data assimilation (3DVAR) method based on the Weather Research and Forecasting Model (WRF) is developed to assimilate satellite-derived humidity from sea fog at its initial stage over the Yellow Sea. The sea fog properties, including its horizontal distribution and thickness, are retrieved empirically from the infrared and visible cloud imageries of the Multifunctional Transport Satellite (MTSAT). Assuming a relative humidity of 100% in fog, the MTSAT-derived humidity is assimilated by the extended 3DVAR assimilation method. Two sea fog cases, one spread widely over the Yellow Sea and the other spread narrowly along the coast, are first studied in detail with a suite of experiments. For the widespread-fog case, the assimilation of MTSAT-derived information significantly improves the forecast of the sea fog area, increasing the probability of detection and equitable threat scores by about 20% and 15%, respectively. The improvement is attributed to a more realistic representation of the marine boundary layer (MBL) and better descriptions of moisture and temperature profiles. For the narrowly spread coastal case, the model completely fails to reproduce the sea fog event without the assimilation of MTSAT-derived humidity. The extended 3DVAR assimilation method is then applied to 10 more sea fog cases to further evaluate its effect on the model simulations. The results reveal that the assimilation of MTSAT-derived humidity not only improves sea fog forecasts but also provides better moisture and temperature structure information in the MBL.

Full access