Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: Gang Zhao x
  • All content x
Clear All Modify Search
Gang Zhao, Huilin Gao, and Lan Cuo

Abstract

A thorough understanding of the peak flows under urbanization and climate change—with the associated uncertainties—is indispensable for mitigating the negative social, economic, and environmental impacts from flooding. In this paper, a case study was conducted by applying the Distributed Hydrology Soil Vegetation Model (DHSVM) to the San Antonio River basin (SARB), Texas. Historical and future land-cover maps were assembled to represent the urbanization process. Future climate and its uncertainties were represented by a series of designed scenarios using the Change Factor (CF) method. The factors were calculated by comparing the model ensemble from phase 5 of the Coupled Model Intercomparison Project (CMIP5) with baseline historical climatology during two future periods (2020–49, period 1; 2070–99, period 2). It was found that with urban impervious areas increasing alone, annual peak flows may increase from 601 (period 1) to 885 m3 s−1 (period 2). With regard to climate change, annual peak flows driven by forcings from maximum, median, and minimum CFs under four representative concentration pathways (RCPs) were analyzed. While the median values of future annual peak flows—forced by the median CF values—are very similar to the baseline under all RCPs, in each case the uncertainty range (calculated as the difference between annual peak flows driven by the maximum and minimum CFs) is very large. When urbanization and climate change coevolve, these averaged annual peak flows from the four RCPs will increase from 447 (period 1) to 707 m3 s−1 (period 2), with the uncertainties associated with climate change more than 3 times greater than those from urbanization.

Full access
Long Wen, Kun Zhao, Guifu Zhang, Su Liu, and Gang Chen

Abstract

Instrumentation limitations on measured raindrop size distributions (DSDs) and their derived relations and physical parameters are studied through a comparison of the DSD measurements during mei-yu season in east China by four collocated instruments, that is, a two-dimensional video disdrometer (2DVD), a vertically pointing Micro Rain Radar (MRR), and two laser-optical OTT Particle Size Velocity (PARSIVEL) disdrometers (first generation: OTT-1; second generation: OTT-2). Among the four instruments, the 2DVD provides the most accurate DSD and drop velocity measurements, so its measured rainfall amount has the best agreement with the reference rain gauge. Other instruments tend to miss more small drops (D < 1 mm), leading to inaccurate DSDs and a lower rainfall amount. The low rainfall estimation becomes significant during heavy rainfall. The impacts of instrument limitations on the microphysical processes (e.g., evaporation and accretion rates) and convective storm morphology are evaluated. This is important especially for mei-yu precipitation, which is dominated by a high concentration of small drops. Hence, the instrument limitations need to be taken into account in both QPE and microphysics parameterization.

Full access
Hao Huang, Guifu Zhang, Kun Zhao, Su Liu, Long Wen, Gang Chen, and Zhengwei Yang

Abstract

Drop size distribution (DSD) is a fundamental parameter in rain microphysics. Retrieving DSDs from polarimetric radar measurements extends the capabilities of rain microphysics research and quantitative precipitation estimation. In this study, issues in rain DSD retrieval were studied with simulated and measured data. It was found that a three-parameter gamma distribution model was not suitable for directly retrieving DSD from polarimetric radar measurements. A statistical constraint, such as the shape–slope relation used in the constrained-gamma (C-G) distribution model, helped to reduce the uncertainties and errors in the retrieval. The inclusion of specific differential phase (K DP) measurements resulted in more accurate DSD retrieval and rain physical parameter estimation if the measurement errors were properly characterized in the error minimization analysis (EMA), which was verified using two real precipitation events. The study demonstrated the potential of using full polarimetric radar measurements to improve rain DSD retrieval.

Full access
Guijie Zhao, Gang Huang, Renguang Wu, Weichen Tao, Hainan Gong, Xia Qu, and Kaiming Hu

Abstract

The East Asian summer monsoon (EASM) and its variability involve circulation systems in both the tropics and midlatitudes as well as in both the lower and upper troposphere. Considering this fact, a new EASM index (NEWI) is proposed based on 200-hPa zonal wind, which takes into account wind anomalies in the southern (about 5°N), middle (about 20°N), and northern areas (about 35°N) of East Asia. The NEWI can capture the interannual EASM-related climate anomalies and the interdecadal variability well. Compared to previous indices, the NEWI shows a better performance in describing precipitation and air temperature variations over East Asia. It can also show distinct climate anomalous features in early and late summer. The NEWI is tightly associated with the East Asian–Pacific or the Pacific–Japan teleconnection, suggesting a possible role of internal dynamics in the EASM variability. Meanwhile, the NEWI is significantly linked to El Niño–Southern Oscillation and tropical Indian Ocean sea surface temperature anomalies. Furthermore, the NEWI is highly predictable in the ENSEMBLES models, indicating its advantage for operational prediction of the EASM. The physical mechanism of the EASM variability as represented by the NEWI is also explicit. Both warm advection anomalies of temperature by anomalous westerly winds and the advection of anomalous positive relative vorticity by northerly basic winds cause anomalous ascending motion over the mei-yu–changma–baiu rainfall area, and vice versa over the South China Sea area. Hence, this NEWI would be a good choice to study, monitor, and predict the EASM.

Full access
Lianglyu Chen, Chengsi Liu, Ming Xue, Gang Zhao, Rong Kong, and Youngsun Jung

Abstract

When directly assimilating radar data within a variational framework using hydrometeor mixing ratios (q) as control variables (CVq), the gradient of the cost function becomes extremely large when background mixing ratio is close to zero. This significantly slows down minimization convergence and makes the assimilation of radial velocity and other observations ineffective because of the dominance of the reflectivity observation term in the cost function gradient. Using logarithmic hydrometeor mixing ratios as control variables (CV logq) can alleviate the problem but the high nonlinearity of logarithmic transformation can introduce spurious analysis increments into mixing ratios. In this study, power transform of hydrometeors is proposed to form new control variables (CVpq) where the nonlinearity of transformation can be adjusted by a tuning exponent or power parameter p. The performance of assimilating radar data using CVpq is compared with those using CVq and CV logq for the analyses and forecasts of five convective storm cases from the spring of 2017. Results show that CVpq with p = 0.4 (CVpq0.4) gives the best reflectivity forecasts in terms of root-mean-square error and equitable threat score. Furthermore, CVpq0.4 has faster convergence of cost function minimization than CVq and produces less spurious analysis increment than CV logq. Compared to CVq and CV logq, CVpq0.4 has better skills of 0–3-h composite reflectivity forecasts, and the updraft helicity tracks for the 16 May 2017 Texas and Oklahoma tornado outbreak case are more consistent with observations when using CVpq0.4.

Restricted access
Yong Zhao, Anning Huang, Yang Zhou, Danqing Huang, Qing Yang, Yufen Ma, Man Li, and Gang Wei

Abstract

The changes in summer rainfall over the Tarim Basin, China, and the underlying mechanisms have been investigated using the observed rainfall data at 34 stations and the NCEP–NCAR reanalysis data during the period of 1961–2007. Results show that the summer rainfall over the Tarim Basin, which exhibits a significant increasing trend during the last half century, is closely related to the summer middle and upper tropospheric cooling over central Asia. Mechanism analysis indicates that the middle and upper tropospheric cooling over central Asia results in a location farther south of the subtropical westerly jet over western and central Asia with anomalous southerly wind at lower levels and ascending motion prevailing over the Tarim Basin. Such anomalies in the atmospheric circulations provide favorable conditions for the enhanced summer rainfall over the Tarim Basin. Further analysis suggests that the weakened South Asian summer monsoon (SASM) could be potentially responsible for the middle and upper tropospheric cooling over central Asia. This is largely through the atmospheric responses to the diabatic heating effect of the SASM. A weakened SASM can result in an anomalous cyclone in the middle and upper troposphere over central Asia. The western part of the anomalous cyclone produces more cold air advection, which leads to the cooling. This study suggests indirect but important effects of the SASM on the summer rainfall over the Tarim Basin.

Full access
Jian Lu, Koichi Sakaguchi, Qing Yang, L. Ruby Leung, Gang Chen, Chun Zhao, Erik Swenson, and Zhangshuan J. Hou

Abstract

Building on the recent advent of the concept of finite-amplitude wave activity, a contour-following diagnostics for column water vapor (CWV) is developed and applied to a pair of aquaplanet model simulations to understand and quantify the higher moments in the global hydrological cycle. The Lagrangian nature of the diagnostics leads to a more tractable formalism for the transient, zonally asymmetric component of the hydrological cycle, with a strong linear relation emerging between the wave activity and the wave component of precipitation minus evaporation (). The dry-versus-wet disparity in the transient hydrological cycle is measured by , and it is found to increase at a super-Clausius–Clapeyron rate at the poleward side of the mean storm track in response to a uniform sea surface temperature (SST) warming and the meridional structure of the increase can be largely attributed to the change of the meridional stirring scale of the midlatitude Rossby waves. Further scaling for indicates that the rate of the wavy hydrological cycle, measured by the ratio of to the CWV wave activity, is subdued almost everywhere in the extratropics, implying an overall weakening of the transient circulation. Extending the CWV wave activity analysis to the transient moist regions helps reveal some unique characteristics of atmospheric rivers in terms of transport function, minimum precipitation efficiency, and maximum hydrological cycle rate, as well as an overall weakening of the hydrological cycle rate in the atmospheric river regions under SST warming.

Full access
Gang Chen, Kun Zhao, Guifu Zhang, Hao Huang, Su Liu, Long Wen, Zhonglin Yang, Zhengwei Yang, Lili Xu, and Wenjian Zhu

Abstract

In this study, the capability of using a C-band polarimetric Doppler radar and a two-dimensional video disdrometer (2DVD) to estimate monsoon-influenced summer rainfall during the Observation, Prediction and Analysis of Severe Convection of China (OPACC) field campaign in 2014 and 2015 in eastern China is investigated. Three different rainfall R estimators, for reflectivity at horizontal polarization [R(Z h)], for reflectivity at horizontal polarization and differential reflectivity factor [R(Z h, Z dr)], and for specific differential phase [R(K DP)], are derived from 2-yr 2DVD observations of summer precipitation systems. The radar-estimated rainfall is compared to gauge observations from eight rainfall episodes. Results show that the two polarimetric estimators, R(Z h, Z dr) and R(K DP), perform better than the traditional Z hR relation [i.e., R(Z h)]. The K DP-based estimator [i.e., R(K DP)] produces the best rainfall accumulations. The radar rainfall estimators perform differently across the three organized convective systems (mei-yu rainband, typhoon rainband, and squall line). Estimator R(Z h) overestimates rainfall in the mei-yu rainband and squall line, and R(Z h, Z dr) mitigates the overestimation in the mei-yu rainband but has a large bias in the squall line. QPE from R(K DP) is the most accurate among the three estimators, but it possesses a relatively large bias for the squall line compared to the mei-yu case. The high variability of drop size distribution (DSD) related to the precipitation microphysics in different types of rain is largely responsible for the case-dependent QPE performance using any single radar rainfall estimator. The squall line has a distinct ice-phase process with a large mean size of raindrops, while the mei-yu rainband and typhoon rainband are composed of smaller raindrops. Based on the statistical QPE error in the Z HZ DR space, a new composite rainfall estimator is constructed by combining R(Z h), R(Z h, Z dr), and R(K DP) and is proven to outperform any single rainfall estimator.

Full access
Xiaoyan Zhang, Jianping Huang, Gang Li, Yongwei Wang, Cheng Liu, Kaihui Zhao, Xinyu Tao, Xiao-Ming Hu, and Xuhui Lee

Abstract

The Weather Research and Forecasting (WRF) Model is used in large-eddy simulation (LES) mode to investigate a lake-breeze case occurring on 12 June 2012 over the Lake Taihu region of China. Observational data from 15 locations, wind profiler radar, and the Moderate Resolution Imaging Spectroradiometer (MODIS) are used to evaluate the WRF nested-LES performance in simulating lake breezes. Results indicate that the simulated temporal and spatial variations of the lake breeze by WRF nested LES are consistent with observations. The simulations with high-resolution grid spacing and the LES scheme have a high correlation coefficient and low mean bias when evaluated against 2-m temperature, 10-m wind, and horizontal and vertical lake-breeze circulations. The atmospheric boundary layer (ABL) remains stable over the lake throughout the lake-breeze event, and the stability becomes even stronger as the lake breeze reaches its mature stage. The improved ABL simulation with LES at a grid spacing of 150 m indicates that the non-LES planetary boundary layer parameterization scheme does not adequately represent subgrid-scale turbulent motions. Running WRF fully coupled to a lake model improves lake-surface temperature and consequently the lake-breeze simulations. Allowing for additional model spinup results in a positive impact on lake-surface temperature prediction but is a heavy computational burden. Refinement of a water-property parameter used in the Community Land Model, version 4.5, within WRF and constraining the lake-surface temperature with observational data would further improve lake-breeze representation.

Full access
Aaron Johnson, Xuguang Wang, Ming Xue, Fanyou Kong, Gang Zhao, Yunheng Wang, Kevin W. Thomas, Keith A. Brewster, and Jidong Gao

Abstract

Multiscale convection-allowing precipitation forecast perturbations are examined for two forecasts and systematically over 34 forecasts out to 30-h lead time using Haar Wavelet decomposition. Two small-scale initial condition (IC) perturbation methods are compared to the larger-scale IC and physics perturbations in an experimental convection-allowing ensemble. For a precipitation forecast driven primarily by a synoptic-scale baroclinic disturbance, small-scale IC perturbations resulted in little precipitation forecast perturbation energy on medium and large scales, compared to larger-scale IC and physics (LGPH) perturbations after the first few forecast hours. However, for a case where forecast convection at the initial time grew upscale into a mesoscale convective system (MCS), small-scale IC and LGPH perturbations resulted in similar forecast perturbation energy on all scales after about 12 h. Small-scale IC perturbations added to LGPH increased total forecast perturbation energy for this case. Averaged over 34 forecasts, the small-scale IC perturbations had little impact on large forecast scales while LGPH accounted for about half of the error energy on such scales. The impact of small-scale IC perturbations was also less than, but comparable to, the impact of LGPH perturbations on medium scales. On small scales, the impact of small-scale IC perturbations was at least as large as the LGPH perturbations. The spatial structure of small-scale IC perturbations affected the evolution of forecast perturbations, especially at medium scales. There was little systematic impact of the small-scale IC perturbations when added to LGPH. These results motivate further studies on properly sampling multiscale IC errors.

Full access