Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Gerd-Jan van Zadelhoff x
  • All content x
Clear All Modify Search
Andrew J. Heymsfield, Carl Schmitt, Aaron Bansemer, Gerd-Jan van Zadelhoff, Matthew J. McGill, Cynthia Twohy, and Darrel Baumgardner
Full access
Andrew J. Heymsfield, Gerd-Jan van Zadelhoff, David P. Donovan, Frederic Fabry, Robin J. Hogan, and Anthony J. Illingworth

Abstract

This two-part study addresses the development of reliable estimates of the mass and fall speed of single ice particles and ensembles. Part I of the study reports temperature-dependent coefficients for the mass-dimensional relationship, m = aDb, where D is particle maximum dimension. The fall velocity relationship, Vt = ADB, is developed from observations in synoptic and low-latitude, convectively generated, ice cloud layers, sampled over a wide range of temperatures using an assumed range for the exponent b. Values for a, A, and B were found that were consistent with the measured particle size distributions (PSD) and the ice water content (IWC).

To refine the estimates of coefficients a and b to fit both lower and higher moments of the PSD and the associated values for A and B, Part II uses the PSD from Part I plus coincident, vertically pointing Doppler radar returns. The observations and derived coefficients are used to evaluate earlier, single-moment, bulk ice microphysical parameterization schemes as well as to develop improved, statistically based, microphysical relationships. They may be used in cloud and climate models, and to retrieve cloud properties from ground-based Doppler radar and spaceborne, conventional radar returns.

Full access
Andrew J. Heymsfield, Carl Schmitt, Aaron Bansemer, Gerd-Jan van Zadelhoff, Matthew J. McGill, Cynthia Twohy, and Darrel Baumgardner

Abstract

The effective radius (re) is a crucial variable in representing the radiative properties of cloud layers in general circulation models. This parameter is proportional to the condensed water content (CWC) divided by the extinction (σ). For ice cloud layers, parameterizations for re have been developed from aircraft in situ measurements 1) indirectly, using data obtained from particle spectrometer probes and assumptions or observations about particle shape and mass to get the ice water content (IWC) and area to get σ, and recently 2) from probes that derive IWC and σ more directly, referred to as the direct approach, even though the extinction is not measured directly.

This study compares [IWC/σ] derived from the two methods using datasets acquired from comparable instruments on two aircraft, one sampling clouds at midlevels and the other at upper levels during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) field program in Florida in 2002. A penetration by one of the aircraft into a cold midlatitude orographic wave cloud composed of small particles is further evaluated. The σ and IWC derived by each method are compared and evaluated in different ways for each aircraft dataset. Direct measurements of σ exceed those derived indirectly by a factor of 2–2.5. The IWC probes, relying on ice sublimation, appear to measure accurately except when the IWC is high or the particles too large to sublimate completely during the short transit time through the probe. The IWC estimated from the particle probes are accurate when direct measurements are available to provide constraints and give useful information in high IWC/large particle situations.

Because of the discrepancy in σ estimates between the direct and indirect approaches, there is a factor of 2–3 difference in [IWC/σ] between them. Although there are significant uncertainties involved in its use, comparisons with several independent data sources suggest that the indirect method is the more accurate of the two approaches. However, experiments are needed to resolve the source of the discrepancy in σ.

Full access
Andrew J. Heymsfield, Alain Protat, Dominique Bouniol, Richard T. Austin, Robin J. Hogan, Julien Delanoë, Hajime Okamoto, Kaori Sato, Gerd-Jan van Zadelhoff, David P. Donovan, and Zhien Wang

Abstract

Vertical profiles of ice water content (IWC) can now be derived globally from spaceborne cloud satellite radar (CloudSat) data. Integrating these data with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data may further increase accuracy. Evaluations of the accuracy of IWC retrieved from radar alone and together with other measurements are now essential. A forward model employing aircraft Lagrangian spiral descents through mid- and low-latitude ice clouds is used to estimate profiles of what a lidar and conventional and Doppler radar would sense. Radar reflectivity Ze and Doppler fall speed at multiple wavelengths and extinction in visible wavelengths were derived from particle size distributions and shape data, constrained by IWC that were measured directly in most instances. These data were provided to eight teams that together cover 10 retrieval methods. Almost 3400 vertically distributed points from 19 clouds were used. Approximate cloud optical depths ranged from below 1 to more than 50. The teams returned retrieval IWC profiles that were evaluated in seven different ways to identify the amount and sources of errors. The mean (median) ratio of the retrieved-to-measured IWC was 1.15 (1.03) ± 0.66 for all teams, 1.08 (1.00) ± 0.60 for those employing a lidar–radar approach, and 1.27 (1.12) ± 0.78 for the standard CloudSat radar–visible optical depth algorithm for Ze > −28 dBZe. The ratios for the groups employing the lidar–radar approach and the radar–visible optical depth algorithm may be lower by as much as 25% because of uncertainties in the extinction in small ice particles provided to the groups. Retrievals from future spaceborne radar using reflectivity–Doppler fall speeds show considerable promise. A lidar–radar approach, as applied to measurements from CALIPSO and CloudSat, is useful only in a narrow range of ice water paths (IWP) (40 < IWP < 100 g m−2). Because of the use of the Rayleigh approximation at high reflectivities in some of the algorithms and differences in the way nonspherical particles and Mie effects are considered, IWC retrievals in regions of radar reflectivity at 94 GHz exceeding about 5 dBZe are subject to uncertainties of ±50%.

Full access