Search Results

You are looking at 1 - 10 of 17 items for

  • Author or Editor: Gijs de Boer x
  • All content x
Clear All Modify Search
Gijs de Boer, Edwin W. Eloranta, and Matthew D. Shupe

Abstract

Macro- and microphysical properties of single-layer stratiform mixed-phase clouds are derived from multiple years of lidar, radar, and radiosonde observations. Measurements were made as part of the Mixed-Phase Arctic Clouds Experiment (MPACE) and the Study of Environmental Arctic Change (SEARCH) in Barrow, Alaska, and Eureka, Nunavut, Canada, respectively. Single-layer mixed-phase clouds occurred between 4% and 26% of the total time observed, varying with season and location. They had mean cloud-base heights between ∼700 and 2100 m and thicknesses between ∼200 and 700 m. Seasonal mean cloud optical depths ranged from 2.2 up. The clouds existed at temperatures of ∼242–271 K and occurred under different wind conditions, depending on season. Utilizing retrievals from a combination of lidar, radar, and microwave radiometer, mean cloud microphysical properties were derived, with mean liquid effective diameters estimated from 16 to 49 μm, mean liquid number densities on the order of 104–105 L−1, and mean water contents estimated between 0.07 and 0.28 g m−3. Ice precipitation was shown to have mean ice effective diameters of 50–125 μm, mean ice number densities on the order of 10 L−1, and mean water contents estimated between 0.012 and 0.031 g m−3. Mean cloud liquid water paths ranged from 25 to 100 g m−2. All results are compared to previous studies, and potential retrieval errors are discussed. Additionally, seasonal variation in macro- and microphysical properties was highlighted. Finally, fraction of liquid water to ice mass was shown to decrease with decreasing temperature.

Full access
Sergey Y. Matrosov, Maximilian Maahn, and Gijs de Boer

Abstract

The influence of ice hydrometeor shape on the dual-wavelength ratio (DWR) of radar reflectivities at millimeter-wavelength frequencies is studied theoretically and on the basis of observations. Data from dual-frequency (Ka–W bands) radar show that, for vertically pointing measurements, DWR increasing trends with reflectivity Z e are very pronounced when Ka-band Z e is greater than about 0 dBZ and that DWR and Z e values are usually well correlated. This correlation is explained by strong relations between hydrometeor characteristic size and both of these radar variables. The observed DWR variability for a given level of reflectivity is as large as 8 dB, which is in part due to changes in mean hydrometeor shape as expressed in terms of the particle aspect ratio. Hydrometeors with a higher degree of nonsphericity exhibit lower DWR values when compared with quasi-spherical particles because of near-zenith reflectivity enhancements for particles outside the Rayleigh-scattering regime. When particle mass–size relations do not change significantly (e.g., for low-rime conditions), DWR can be used to differentiate between quasi-spherical and highly nonspherical hydrometeors because (for a given reflectivity value) DWR tends to increase as particles become more spherical. Another approach for differentiating among different degrees of nonsphericity for larger scatterers is based on analyzing DWR changes as a function of radar elevation angle. These changes are more pronounced for highly nonspherical particles and can exceed 10 dB. Measurements of snowfall spatiotemporally collocated with spaceborne CloudSat W-band radar and ground-based S-band operational weather radars also indicate that DWR values are generally smaller for ice hydrometeors with higher degrees of nonsphericity, which, for the same level of S-band reflectivity, exhibit greater differential reflectivity values.

Full access
Tempei Hashino, Gijs de Boer, Hajime Okamoto, and Gregory J. Tripoli

Abstract

The number concentration of ice particles in Arctic mixed-phase clouds is a major controlling factor of cloud lifetime. The relationships between ice nucleation mode and ice crystal habit development are not yet constrained by observations. This study uses a habit-predicting microphysical scheme within a 3D large-eddy simulation model to evaluate the relationship between immersion freezing and ice habit in a simulated Arctic mixed-phase cloud case. Three immersion freezing parameterizations are considered: a volume-dependent freezing scheme (VF), a parameterization limited to activated droplets (C-AC), and a parameterization limited to coarse aerosol particles (C-CM). Both C-AC and C-CM are based on classical nucleation theory. The freezing rate with VF is found to be greater in downdraft regions than in updraft regions due to the downdraft having a higher number concentration of large droplets. The C-AC cases show active freezing of small droplets near cloud top, whereas in the C-CM cases, mainly the 8–32-μm-sized droplets freeze in updraft regions near the cloud base. Because the initial crystal size is assumed to affect the axis ratio of hexagonal plates, the VF cases produce crystals with larger axis ratios, resulting in smaller mode radii than the C-AC cases. In all cases, irregular polycrystals dominate near cloud top and a band-like structure develops within the cloud, which qualitatively agrees with previous observations. In the VF and C-CM cases, unactivated large droplets arising from coarse-mode aerosol particles contributed significantly to the freezing rate, producing an important influence on crystal habit.

Open access
Sergey Y. Matrosov, Carl G. Schmitt, Maximilian Maahn, and Gijs de Boer

Abstract

A remote sensing approach to retrieve the degree of nonsphericity of ice hydrometeors using scanning polarimetric Ka-band radar measurements from a U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program cloud radar operated in an alternate transmission–simultaneous reception mode is introduced. Nonsphericity is characterized by aspect ratios representing the ratios of particle minor-to-major dimensions. The approach is based on the use of a circular depolarization ratio (CDR) proxy reconstructed from differential reflectivity Z DR and copolar correlation coefficient ρ linear polarization measurements. Essentially combining information contained in Z DR and ρ , CDR-based retrievals of aspect ratios are fairly insensitive to hydrometeor orientation if measurements are performed at elevation angles of around 40°–50°. The suggested approach is applied to data collected using the third ARM Mobile Facility (AMF3), deployed to Oliktok Point, Alaska. Aspect ratio retrievals were also performed using Z DR measurements that are more strongly (compared to CDR) influenced by hydrometeor orientation. The results of radar-based retrievals are compared with in situ measurements from the tethered balloon system (TBS)-based video ice particle sampler and the ground-based multiangle snowflake camera. The observed ice hydrometeors were predominantly irregular-shaped ice crystals and aggregates, with aspect ratios varying between approximately 0.3 and 0.8. The retrievals assume that particle bulk density influencing (besides the particle shape) observed polarimetric variables can be deduced from the estimates of particle characteristic size. Uncertainties of CDR-based aspect ratio retrievals are estimated at about 0.1–0.15. Given these uncertainties, radar-based retrievals generally agreed with in situ measurements. The advantages of using the CDR proxy compared to the linear depolarization ratio are discussed.

Full access
Sergey Y. Matrosov, Alexander V. Ryzhkov, Maximilian Maahn, and Gijs de Boer

Abstract

A polarimetric radar–based method for retrieving atmospheric ice particle shapes is applied to snowfall measurements by a scanning Ka-band radar deployed at Oliktok Point, Alaska (70.495°N, 149.883°W). The mean aspect ratio, which is defined by the hydrometeor minor-to-major dimension ratio for a spheroidal particle model, is retrieved as a particle shape parameter. The radar variables used for aspect ratio profile retrievals include reflectivity, differential reflectivity, and the copolar correlation coefficient. The retrievals indicate that hydrometeors with mean aspect ratios below 0.2–0.3 are usually present in regions with air temperatures warmer than approximately from −17° to −15°C, corresponding to a regime that has been shown to be favorable for growth of pristine ice crystals of planar habits. Radar reflectivities corresponding to the lowest mean aspect ratios are generally between −10 and 10 dBZ. For colder temperatures, mean aspect ratios are typically in a range between 0.3 and 0.8. There is a tendency for hydrometeor aspect ratios to increase as particles transition from altitudes in the temperature range from −17° to −15°C toward the ground. This increase is believed to result from aggregation and riming processes that cause particles to become more spherical and is associated with areas demonstrating differential reflectivity decreases with increasing reflectivity. Aspect ratio retrievals at the lowest altitudes are consistent with in situ measurements obtained using a surface-based multiangle snowflake camera. Pronounced gradients in particle aspect ratio profiles are observed at altitudes at which there is a change in the dominant hydrometeor species, as inferred by spectral measurements from a vertically pointing Doppler radar.

Restricted access
Amy Solomon, Matthew D. Shupe, Ola Persson, Hugh Morrison, Takanobu Yamaguchi, Peter M. Caldwell, and Gijs de Boer

Abstract

In this study, a series of idealized large-eddy simulations is used to understand the relative impact of cloud-top and subcloud-layer sources of moisture on the microphysical–radiative–dynamical feedbacks in an Arctic mixed-phase stratocumulus (AMPS) cloud system. This study focuses on a case derived from observations of a persistent single-layer AMPS cloud deck on 8 April 2008 during the Indirect and Semi-Direct Aerosol Campaign near Barrow, Alaska. Moisture and moist static energy budgets are used to examine the potential impact of ice in mixed-phase clouds, specific humidity inversions coincident with temperature inversions as a source of moisture for the cloud system, and the presence of cloud liquid water above the mixed-layer top. This study demonstrates that AMPS have remarkable insensitivity to changes in moisture source. When the overlying air is dried initially, radiative cooling and turbulent entrainment increase moisture import from the surface layer. When the surface layer is dried initially, the system evolves to a state with reduced mixed-layer water vapor and increased surface-layer moisture, reducing the loss of water through precipitation and entrainment of near-surface air. Only when moisture is reduced both above and below the mixed layer does the AMPS decay without reaching a quasi-equilibrium state. A fundamental finding of this study is that, with or without cloud ice and with or without a specific humidity inversion, the cloud layer eventually extends into the temperature inversion producing a precipitation flux as a source of water into the mixed layer.

Full access
Gijs de Boer, Brian Argrow, John Cassano, Joseph Cione, Eric Frew, Dale Lawrence, Gary Wick, and Cory Wolff
Open access
Heike Kalesse, Gijs de Boer, Amy Solomon, Mariko Oue, Maike Ahlgrimm, Damao Zhang, Matthew D. Shupe, Edward Luke, and Alain Protat

Abstract

Understanding phase transitions in mixed-phase clouds is of great importance because the hydrometeor phase controls the lifetime and radiative effects of clouds. In high latitudes, these cloud radiative effects have a crucial impact on the surface energy budget and thus on the evolution of the ice cover. For a springtime low-level mixed-phase stratiform cloud case from Barrow, Alaska, a unique combination of instruments and retrieval methods is combined with multiple modeling perspectives to determine key processes that control cloud phase partitioning. The interplay of local cloud-scale versus large-scale processes is considered. Rapid changes in phase partitioning were found to be caused by several main factors. Major influences were the large-scale advection of different air masses with different aerosol concentrations and humidity content, cloud-scale processes such as a change in the thermodynamical coupling state, and local-scale dynamics influencing the residence time of ice particles. Other factors such as radiative shielding by a cirrus and the influence of the solar cycle were found to only play a minor role for the specific case study (11–12 March 2013). For an even better understanding of cloud phase transitions, observations of key aerosol parameters such as profiles of cloud condensation nucleus and ice nucleus concentration are desirable.

Full access
Gijs de Boer, William Chapman, Jennifer E. Kay, Brian Medeiros, Matthew D. Shupe, Steve Vavrus, and John Walsh

Abstract

Simulation of key features of the Arctic atmosphere in the Community Climate System Model, version 4 (CCSM4) is evaluated against observational and reanalysis datasets for the present-day (1981–2005). Surface air temperature, sea level pressure, cloud cover and phase, precipitation and evaporation, the atmospheric energy budget, and lower-tropospheric stability are evaluated. Simulated surface air temperatures are found to be slightly too cold when compared with the 40-yr ECMWF Re-Analysis (ERA-40). Spatial patterns and temporal variability are well simulated. Evaluation of the sea level pressure demonstrates some large biases, most noticeably an under simulation of the Beaufort High during spring and autumn. Monthly Arctic-wide biases of up to 13 mb are reported. Cloud cover is underpredicted for all but summer months, and cloud phase is demonstrated to be different from observations. Despite low cloud cover, simulated all-sky liquid water paths are too high, while ice water path was generally too low. Precipitation is found to be excessive over much of the Arctic compared to ERA-40 and the Global Precipitation Climatology Project (GPCP) estimates. With some exceptions, evaporation is well captured by CCSM4, resulting in PE estimates that are too high. CCSM4 energy budget terms show promising agreement with estimates from several sources. The most noticeable exception to this is the top of the atmosphere (TOA) fluxes that are found to be too low while surface fluxes are found to be too high during summer months. Finally, the lower troposphere is found to be too stable when compared to ERA-40 during all times of year but particularly during spring and summer months.

Full access

A Focus On Mixed-Phase Clouds

The Status of Ground-Based Observational Methods

Matthew D. Shupe, John S. Daniel, Gijs de Boer, Edwin W. Eloranta, Pavlos Kollias, Charles N. Long, Edward P. Luke, David D. Turner, and Johannes Verlinde

The phase composition and microphysical structure of clouds define the manner in which they modulate atmospheric radiation and contribute to the hydrologic cycle. Issues regarding cloud phase partitioning and transformation come to bear directly in mixed-phase clouds, and have been difficult to address within current modeling frameworks. Ground-based, remote-sensing observations of mixed-phase clouds can contribute a significant body of knowledge with which to better understand, and thereby more accurately model, clouds and their phase-defining processes. Utilizing example observations from the Mixed-Phase Arctic Cloud Experiment (M-PACE), which occurred at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program's Climate Research Facility in Barrow, Alaska, during autumn 2004, we review the current status of ground-based observation and retrieval methods used in characterizing the macrophysical, microphysical, radiative, and dynamical properties of stratiform mixed-phase clouds. In general, cloud phase, boundaries, ice properties, liquid water path, optical depth, and vertical velocity are available from a combination of active and passive sensors. Significant deficiencies exist in our ability to vertically characterize the liquid phase, to distinguish ice crystal habits, and to understand aerosol-cloud interactions. Further validation studies are needed to evaluate, improve, and expand our retrieval abilities in mixed-phase clouds.

Full access