Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Gilberto Fisch x
  • All content x
Clear All Modify Search
Luiz F. Sapucci, Luiz A. T. Machado, Reinaldo B. da Silveira, Gilberto Fisch, and João F. G. Monico

Abstract

The quality of the vertical distribution measurements of humidity in the atmosphere is very important in meteorology due to the crucial role that water vapor plays in the earth’s energy budget. The radiosonde is the humidity measurement device that provides the best vertical resolution. Also, radiosondes are the operational devices that are used to measure the vertical profile of atmospheric water vapor. The World Meteorological Organization (WMO) has carried out several intercomparison experiments at different climatic zones in order to identify the differences between the available commercial sensors. This article presents the results of an experiment that was carried out in Brazil in 2001 in which major commercial radiosonde manufacturers [e.g., Graw Radiosondes GmbH & Co., KG (Germany); MODEM (France); InterMet Systems (United States); Sippican, Inc. (United States); and Vaisala (Finland)] were involved. One of the main goals of this experiment was to evaluate the performance of the different humidity sensors in a tropical region. This evaluation was performed for different atmospheric layers and distinct periods of the day. It also considers the computation of the integrated water vapor (IWV). The results showed that the humidity measurements achieved by the different sensors were quite similar in the low troposphere (the bias median value regarding the RS80 was around 1.8%) and were quite dispersed in the superior layers (the median rms regarding the RS80 was around 14.9%).

Full access
Jose D. Fuentes, Marcelo Chamecki, Rosa Maria Nascimento dos Santos, Celso Von Randow, Paul C. Stoy, Gabriel Katul, David Fitzjarrald, Antonio Manzi, Tobias Gerken, Amy Trowbridge, Livia Souza Freire, Jesus Ruiz-Plancarte, Jair Max Furtunato Maia, Julio Tóta, Nelson Dias, Gilberto Fisch, Courtney Schumacher, Otavio Acevedo, Juliane Rezende Mercer, and Ana Maria Yañez-Serrano

Abstract

We describe the salient features of a field study whose goals are to quantify the vertical distribution of plant-emitted hydrocarbons and their contribution to aerosol and cloud condensation nuclei production above a central Amazonian rain forest. Using observing systems deployed on a 50-m meteorological tower, complemented with tethered balloon deployments, the vertical distribution of hydrocarbons and aerosols was determined under different boundary layer thermodynamic states. The rain forest emits sufficient reactive hydrocarbons, such as isoprene and monoterpenes, to provide precursors of secondary organic aerosols and cloud condensation nuclei. Mesoscale convective systems transport ozone from the middle troposphere, enriching the atmospheric boundary layer as well as the forest canopy and surface layer. Through multiple chemical transformations, the ozone-enriched atmospheric surface layer can oxidize rain forest–emitted hydrocarbons. One conclusion derived from the field studies is that the rain forest produces the necessary chemical species and in sufficient amounts to undergo oxidation and generate aerosols that subsequently activate into cloud condensation nuclei.

Full access
Luiz A. T. Machado, Maria A. F. Silva Dias, Carlos Morales, Gilberto Fisch, Daniel Vila, Rachel Albrecht, Steven J. Goodman, Alan J. P. Calheiros, Thiago Biscaro, Christian Kummerow, Julia Cohen, David Fitzjarrald, Ernani L. Nascimento, Meiry S. Sakamoto, Christopher Cunningham, Jean-Pierre Chaboureau, Walter A. Petersen, David K. Adams, Luca Baldini, Carlos F. Angelis, Luiz F. Sapucci, Paola Salio, Henrique M. J. Barbosa, Eduardo Landulfo, Rodrigo A. F. Souza, Richard J. Blakeslee, Jeffrey Bailey, Saulo Freitas, Wagner F. A. Lima, and Ali Tokay

CHUVA, meaning “rain” in Portuguese, is the acronym for the Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud-Resolving Modeling and to the Global Precipitation Measurement (GPM). The CHUVA project has conducted five field campaigns; the sixth and last campaign will be held in Manaus in 2014. The primary scientific objective of CHUVA is to contribute to the understanding of cloud processes, which represent one of the least understood components of the weather and climate system. The five CHUVA campaigns were designed to investigate specific tropical weather regimes. The first two experiments, in Alcantara and Fortaleza in northeastern Brazil, focused on warm clouds. The third campaign, which was conducted in Belém, was dedicated to tropical squall lines that often form along the sea-breeze front. The fourth campaign was in the Vale do Paraiba of southeastern Brazil, which is a region with intense lightning activity. In addition to contributing to the understanding of cloud process evolution from storms to thunderstorms, this fourth campaign also provided a high-fidelity total lightning proxy dataset for the NOAA Geostationary Operational Environmental Satellite (GOES)-R program. The fifth campaign was carried out in Santa Maria, in southern Brazil, a region of intense hailstorms associated with frequent mesoscale convective complexes. This campaign employed a multimodel high-resolution ensemble experiment. The data collected from contrasting precipitation regimes in tropical continental regions allow the various cloud processes in diverse environments to be compared. Some examples of these previous experiments are presented to illustrate the variability of convection across the tropics.

Full access
Manfred Wendisch, Ulrich Pöschl, Meinrat O. Andreae, Luiz A. T. Machado, Rachel Albrecht, Hans Schlager, Daniel Rosenfeld, Scot T. Martin, Ahmed Abdelmonem, Armin Afchine, Alessandro C. Araùjo, Paulo Artaxo, Heinfried Aufmhoff, Henrique M. J. Barbosa, Stephan Borrmann, Ramon Braga, Bernhard Buchholz, Micael Amore Cecchini, Anja Costa, Joachim Curtius, Maximilian Dollner, Marcel Dorf, Volker Dreiling, Volker Ebert, André Ehrlich, Florian Ewald, Gilberto Fisch, Andreas Fix, Fabian Frank, Daniel Fütterer, Christopher Heckl, Fabian Heidelberg, Tilman Hüneke, Evelyn Jäkel, Emma Järvinen, Tina Jurkat, Sandra Kanter, Udo Kästner, Mareike Kenntner, Jürgen Kesselmeier, Thomas Klimach, Matthias Knecht, Rebecca Kohl, Tobias Kölling, Martina Krämer, Mira Krüger, Trismono Candra Krisna, Jost V. Lavric, Karla Longo, Christoph Mahnke, Antonio O. Manzi, Bernhard Mayer, Stephan Mertes, Andreas Minikin, Sergej Molleker, Steffen Münch, Björn Nillius, Klaus Pfeilsticker, Christopher Pöhlker, Anke Roiger, Diana Rose, Dagmar Rosenow, Daniel Sauer, Martin Schnaiter, Johannes Schneider, Christiane Schulz, Rodrigo A. F. de Souza, Antonio Spanu, Paul Stock, Daniel Vila, Christiane Voigt, Adrian Walser, David Walter, Ralf Weigel, Bernadett Weinzierl, Frank Werner, Marcia A. Yamasoe, Helmut Ziereis, Tobias Zinner, and Martin Zöger

Abstract

Between 1 September and 4 October 2014, a combined airborne and ground-based measurement campaign was conducted to study tropical deep convective clouds over the Brazilian Amazon rain forest. The new German research aircraft, High Altitude and Long Range Research Aircraft (HALO), a modified Gulfstream G550, and extensive ground-based instrumentation were deployed in and near Manaus (State of Amazonas). The campaign was part of the German–Brazilian Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems–Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement) (ACRIDICON– CHUVA) venture to quantify aerosol–cloud–precipitation interactions and their thermodynamic, dynamic, and radiative effects by in situ and remote sensing measurements over Amazonia. The ACRIDICON–CHUVA field observations were carried out in cooperation with the second intensive operating period of Green Ocean Amazon 2014/15 (GoAmazon2014/5). In this paper we focus on the airborne data measured on HALO, which was equipped with about 30 in situ and remote sensing instruments for meteorological, trace gas, aerosol, cloud, precipitation, and spectral solar radiation measurements. Fourteen research flights with a total duration of 96 flight hours were performed. Five scientific topics were pursued: 1) cloud vertical evolution and life cycle (cloud profiling), 2) cloud processing of aerosol particles and trace gases (inflow and outflow), 3) satellite and radar validation (cloud products), 4) vertical transport and mixing (tracer experiment), and 5) cloud formation over forested/deforested areas. Data were collected in near-pristine atmospheric conditions and in environments polluted by biomass burning and urban emissions. The paper presents a general introduction of the ACRIDICON– CHUVA campaign (motivation and addressed research topics) and of HALO with its extensive instrument package, as well as a presentation of a few selected measurement results acquired during the flights for some selected scientific topics.

Full access