Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Giuseppe Zappa x
  • All content x
Clear All Modify Search
Giuseppe Zappa and Theodore G. Shepherd

Abstract

There is increasing interest in understanding the regional impacts of different global warming targets. However, several regional climate impacts depend on the atmospheric circulation, whose response to climate change remains substantially uncertain and not interpretable in a probabilistic sense in multimodel ensemble projections. To account for these uncertainties, a novel approach where regional climate change is analyzed as a function of carbon emissions conditional on plausible storylines of atmospheric circulation change is here presented and applied to the CMIP5 models’ future projections. The different storylines are determined based on the response in three remote drivers of regional circulation: the tropical and polar amplification of global warming and changes in stratospheric vortex strength. As an illustration of this approach, it is shown that the severity of the projected wintertime Mediterranean precipitation decline and central European windiness increase strongly depends on the storyline of circulation change. For a given magnitude of global warming, the highest impact storyline for these aspects of European climate is found for a high tropical amplification and a strengthening of the vortex. The difference in the precipitation and wind responses between the storylines is substantial and equivalent to the contribution from several degrees of global warming. Improving the understanding of the remote driver responses is thus needed to better bound the projected regional impacts in the European sector. The value of these storylines to represent the uncertainty in regional climate projections and to inform the selection of CMIP5 models in regional climate impact studies is discussed.

Full access
Giuseppe Zappa, Valerio Lucarini, and Antonio Navarra

Abstract

An aquaplanet model is used to study the nature of the highly persistent low-frequency waves that have been observed in models forced by zonally symmetric boundary conditions.

Using the Hayashi spectral analysis of the extratropical waves, the authors find that a quasi-stationary wave 5 belongs to a wave packet obeying a well-defined dispersion relation with eastward group velocity. The components of the dispersion relation with k ≥ 5 baroclinically convert eddy available potential energy into eddy kinetic energy, whereas those with k < 5 are baroclinically neutral. In agreement with Green’s model of baroclinic instability, wave 5 is weakly unstable, and the inverse energy cascade, which had been previously proposed as a main forcing for this type of wave, only acts as a positive feedback on its predominantly baroclinic energetics. The quasi-stationary wave is reinforced by a phase lock to an analogous pattern in the tropical convection, which provides further amplification to the wave. It is also found that the Pedlosky bounds on the phase speed of unstable waves provide guidance in explaining the latitudinal structure of the energy conversion, which is shown to be more enhanced where the zonal westerly surface wind is weaker. The wave’s energy is then trapped in the waveguide created by the upper tropospheric jet stream. In agreement with Green’s theory, as the equator-to-pole SST difference is reduced, the stationary marginally stable component shifts toward higher wavenumbers, while wave 5 becomes neutral and westward propagating.

Some properties of the aquaplanet quasi-stationary waves are found to be in interesting agreement with a low frequency wave observed by Salby during December–February in the Southern Hemisphere so that this perspective on low frequency variability, apart from its value in terms of basic geophysical fluid dynamics, might be of specific interest for studying the earth’s atmosphere.

Full access
Giuseppe Zappa, Len Shaffrey, and Kevin Hodges

Abstract

Polar lows are maritime mesocyclones associated with intense surface wind speeds and oceanic heat fluxes at high latitudes. The ability of the Interim ECMWF Re-Analysis (ERA-Interim, hereafter ERAI) to represent polar lows in the North Atlantic is assessed by comparing ERAI and the ECMWF operational analysis for the period 2008–11. First, the representation of a set of satellite-observed polar lows over the Norwegian and Barents Seas in the operational analysis and ERAI is analyzed. Then, the possibility of directly identifying and tracking the polar lows in the operational analysis and ERAI is explored using a tracking algorithm based on 850-hPa vorticity with objective identification criteria on cyclone dynamical intensity and atmospheric static stability. All but one of the satellite-observed polar lows with a lifetime of at least 6 h have an 850-hPa vorticity signature of a collocated mesocyclone in both the operational analysis and ERAI for most of their life cycles. However, the operational analysis has vorticity structures that better resemble the observed cloud patterns and stronger surface wind speed intensities compared to those in ERAI. By applying the objective identification criteria, about 55% of the satellite-observed polar lows are identified and tracked in ERAI, while this fraction increases to about 70% in the operational analysis. Particularly in ERAI, the remaining observed polar lows are mainly not identified because they have too weak wind speed and vorticity intensity compared to the tested criteria. The implication of the tendency of ERAI to underestimate the polar low dynamical intensity for future studies of polar lows is discussed.

Full access
Giuseppe Zappa, Brian J. Hoskins, and Theodore G. Shepherd

Abstract

The detection of anthropogenic climate change can be improved by recognizing the seasonality in the climate change response. This is demonstrated for the North Atlantic jet [zonal wind at 850 hPa (U850)] and European precipitation responses projected by the climate models from phase 5 of CMIP (CMIP5). The U850 future response is characterized by a marked seasonality: an eastward extension of the North Atlantic jet into Europe in November–April and a poleward shift in May–October. Under the RCP8.5 scenario, the multimodel mean response in U850 in these two extended seasonal means emerges by 2035–40 for the lower-latitude features and by 2050–70 for the higher-latitude features, relative to the 1960–90 climate. This is 5–15 years earlier than when evaluated in the traditional meteorological seasons (December–February and June–August), and it results from an increase in the signal-to-noise ratio associated with the spatial coherence of the response within the extended seasons. The annual mean response lacks important information on the seasonality of the response without improving the signal-to-noise ratio. The same two extended seasons are demonstrated to capture the seasonality of the European precipitation response to climate change and to anticipate its emergence by 10–20 years. Furthermore, some of the regional responses (such as the Mediterranean precipitation decline and the U850 response in North Africa in the extended winter) are projected to emerge by 2020–25, according to the models with a strong response. Therefore, observations might soon be useful to test aspects of the atmospheric circulation response predicted by some of the CMIP5 models.

Full access
Giuseppe Zappa, Len C. Shaffrey, and Kevin I. Hodges

Abstract

The ability of the climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) to simulate North Atlantic extratropical cyclones in winter [December–February (DJF)] and summer [June–August (JJA)] is investigated in detail. Cyclones are identified as maxima in T42 vorticity at 850 hPa and their propagation is tracked using an objective feature-tracking algorithm. By comparing the historical CMIP5 simulations (1976–2005) and the ECMWF Interim Re-Analysis (ERA-Interim; 1979–2008), the authors find that systematic biases affect the number and intensity of North Atlantic cyclones in CMIP5 models. In DJF, the North Atlantic storm track tends to be either too zonal or displaced southward, thus leading to too few and weak cyclones over the Norwegian Sea and too many cyclones in central Europe. In JJA, the position of the North Atlantic storm track is generally well captured but some CMIP5 models underestimate the total number of cyclones. The dynamical intensity of cyclones, as measured by either T42 vorticity at 850 hPa or mean sea level pressure, is too weak in both DJF and JJA. The intensity bias has a hemispheric character, and it cannot be simply attributed to the representation of the North Atlantic large-scale atmospheric state. Despite these biases, the representation of Northern Hemisphere (NH) storm tracks has improved since CMIP3 and some CMIP5 models are able of representing well both the number and the intensity of North Atlantic cyclones. In particular, some of the higher-atmospheric-resolution models tend to have a better representation of the tilt of the North Atlantic storm track and of the intensity of cyclones in DJF.

Full access
Paulo Ceppi, Giuseppe Zappa, Theodore G. Shepherd, and Jonathan M. Gregory

Abstract

Poleward shifts of the extratropical atmospheric circulation are a common response to CO2 forcing in global climate models (GCMs), but little is known about the time dependence of this response. Here it is shown that in coupled climate models, the long-term evolution of sea surface temperatures (SSTs) induces two distinct time scales of circulation response to steplike CO2 forcing. In most GCMs from phase 5 of the Coupled Model Intercomparison Project as well as in the multimodel mean, all of the poleward shift of the midlatitude jets and Hadley cell edge occurs in a fast response within 5–10 years of the forcing, during which less than half of the expected equilibrium warming is realized. Compared with this fast response, the slow response over subsequent decades to centuries features stronger polar amplification (especially in the Antarctic), enhanced warming in the Southern Ocean, an El Niño–like pattern of tropical Pacific warming, and weaker land–sea contrast. Atmosphere-only GCM experiments demonstrate that the SST evolution drives the difference between the fast and slow circulation responses, although the direct radiative effect of CO2 also contributes to the fast response. It is further shown that the fast and slow responses determine the long-term evolution of the circulation response to warming in the representative concentration pathway 4.5 (RCP4.5) scenario. The results imply that shifts in midlatitude circulation generally scale with the radiative forcing, rather than with global-mean temperature change. A corollary is that time slices taken from a transient simulation at a given level of warming will considerably overestimate the extratropical circulation response in a stabilized climate.

Open access
Giuseppe Zappa, Len C. Shaffrey, Kevin I. Hodges, Phil G. Sansom, and David B. Stephenson

Abstract

The response of North Atlantic and European extratropical cyclones to climate change is investigated in the climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). In contrast to previous multimodel studies, a feature-tracking algorithm is here applied to separately quantify the responses in the number, the wind intensity, and the precipitation intensity of extratropical cyclones. Moreover, a statistical framework is employed to formally assess the uncertainties in the multimodel projections. Under the midrange representative concentration pathway (RCP4.5) emission scenario, the December–February (DJF) response is characterized by a tripolar pattern over Europe, with an increase in the number of cyclones in central Europe and a decreased number in the Norwegian and Mediterranean Seas. The June–August (JJA) response is characterized by a reduction in the number of North Atlantic cyclones along the southern flank of the storm track. The total number of cyclones decreases in both DJF (−4%) and JJA (−2%). Classifying cyclones according to their intensity indicates a slight basinwide reduction in the number of cyclones associated with strong winds, but an increase in those associated with strong precipitation. However, in DJF, a slight increase in the number and intensity of cyclones associated with strong wind speeds is found over the United Kingdom and central Europe. The results are confirmed under the high-emission RCP8.5 scenario, where the signals tend to be larger. The sources of uncertainty in these projections are discussed.

Full access
Philip G. Sansom, David B. Stephenson, Christopher A. T. Ferro, Giuseppe Zappa, and Len Shaffrey

Abstract

Future climate change projections are often derived from ensembles of simulations from multiple global circulation models using heuristic weighting schemes. This study provides a more rigorous justification for this by introducing a nested family of three simple analysis of variance frameworks. Statistical frameworks are essential in order to quantify the uncertainty associated with the estimate of the mean climate change response.

The most general framework yields the “one model, one vote” weighting scheme often used in climate projection. However, a simpler additive framework is found to be preferable when the climate change response is not strongly model dependent. In such situations, the weighted multimodel mean may be interpreted as an estimate of the actual climate response, even in the presence of shared model biases.

Statistical significance tests are derived to choose the most appropriate framework for specific multimodel ensemble data. The framework assumptions are explicit and can be checked using simple tests and graphical techniques. The frameworks can be used to test for evidence of nonzero climate response and to construct confidence intervals for the size of the response.

The methodology is illustrated by application to North Atlantic storm track data from the Coupled Model Intercomparison Project phase 5 (CMIP5) multimodel ensemble. Despite large variations in the historical storm tracks, the cyclone frequency climate change response is not found to be model dependent over most of the region. This gives high confidence in the response estimates. Statistically significant decreases in cyclone frequency are found on the flanks of the North Atlantic storm track and in the Mediterranean basin.

Full access