Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Gordon McFiggans x
  • Refine by Access: All Content x
Clear All Modify Search
Heike Wex
,
Frank Stratmann
,
David Topping
, and
Gordon McFiggans

Abstract

A comprehensive sensitivity study was carried out examining the sensitivity of hygroscopic growth and activation as modeled with the Köhler equation. Different parameters in the Köhler equation were varied within the range of their currently known uncertainties. The parameters examined include not only those describing the nature of the soluble substances in a particle/droplet and the surface tension σ of the droplet solution, but also the recently proposed representation of parameters coupling the Raoult and Kelvin terms (i.e., partitioning of solute between the surface and bulk phases, although the recently proposed adsorption to wettable but insoluble material was not considered). The examined variations cause significant changes in both hygroscopic growth and activation. Whereas the hygroscopic growth regime below 95% RH is insensitive toward the surface tension σ, σ has a large influence on the activation, increasing with decreasing particle size. This implies that a cloud condensation nuclei (CCN) closure, connecting particle hygroscopic growth to activation, has to account for an influence of the examined substance on σ of the particle, especially for smaller particles in the size range from 50 to 100 nm. A simple estimate showed that a lowering of σ by only 10% can cause a change in the activated fraction (i.e., in the cloud droplet number concentration) of at least 10%–20%. Where organic molecules are present in sufficient concentration to reduce σ, surface tension may be an important factor in determining the activation of aerosol particles to cloud droplets.

Full access

Primary Marine Aerosol Fluxes

Progress and Priorities

Ian M. Brooks
,
Edgar L Andreas
,
Gordon McFiggans
,
Magdalena D. Anguelova
, and
Colin O'Dowd

No Abstract available.

Full access