Search Results
You are looking at 1 - 7 of 7 items for
- Author or Editor: Graham P. Weedon x
- Refine by Access: All Content x
Abstract
A meteorological drought in 2018 led to senescence of the C3 grass at Cardington, Bedfordshire, United Kingdom. Observations of near-surface atmospheric variables and soil moisture are compared to simulations by the JULES land surface model (LSM) as used for Met Office forecasts. In years without drought, JULES provides better standalone simulations of evapotranspiration (ET) and soil moisture when the canopy height and rooting depth are reduced to match local conditions. During drought with the adjusted configuration, JULES correctly estimates total ET, but the components are in the wrong proportions. Several factors affect the estimation of ET including modeled skin temperatures, dewfall, and bare-soil evaporation. A diurnal range of skin temperatures close to observed is produced via the adjusted configuration and doubling the optical extinction coefficient. Although modeled ET during drought matches observed ET, this includes simulation of transpiration but in reality the grass was senescent. Excluding transpiration, the modeled bare-soil evaporation underestimates the observed midday latent heat flux. Part of the missing latent heat may relate to inappropriate parameterization of hydraulic properties of dry soils and part may be due to insufficient evaporation of dew. Dew meters indicate dewfall of up to 20 W m−2 during drought when the surface is cooling radiatively and turbulence is minimal. These data demonstrate that eddy-covariance techniques fail to reliably record the times, intensity, and variations in negative latent heat flux. Furthermore, the parameterization of atmospheric turbulence as used in LSMs fails to represent accurately dewfall during calm conditions when the surface is radiatively cooled.
Abstract
A meteorological drought in 2018 led to senescence of the C3 grass at Cardington, Bedfordshire, United Kingdom. Observations of near-surface atmospheric variables and soil moisture are compared to simulations by the JULES land surface model (LSM) as used for Met Office forecasts. In years without drought, JULES provides better standalone simulations of evapotranspiration (ET) and soil moisture when the canopy height and rooting depth are reduced to match local conditions. During drought with the adjusted configuration, JULES correctly estimates total ET, but the components are in the wrong proportions. Several factors affect the estimation of ET including modeled skin temperatures, dewfall, and bare-soil evaporation. A diurnal range of skin temperatures close to observed is produced via the adjusted configuration and doubling the optical extinction coefficient. Although modeled ET during drought matches observed ET, this includes simulation of transpiration but in reality the grass was senescent. Excluding transpiration, the modeled bare-soil evaporation underestimates the observed midday latent heat flux. Part of the missing latent heat may relate to inappropriate parameterization of hydraulic properties of dry soils and part may be due to insufficient evaporation of dew. Dew meters indicate dewfall of up to 20 W m−2 during drought when the surface is cooling radiatively and turbulence is minimal. These data demonstrate that eddy-covariance techniques fail to reliably record the times, intensity, and variations in negative latent heat flux. Furthermore, the parameterization of atmospheric turbulence as used in LSMs fails to represent accurately dewfall during calm conditions when the surface is radiatively cooled.
Abstract
Land–atmosphere feedbacks play an important role in the weather and climate of many semiarid regions. These feedbacks are strongly controlled by how the surface responds to precipitation events, which regulate the return of heat and moisture to the atmosphere. Characteristics of the surface can result in both differing amplitudes and rates of warming following rain. Spectral analysis is used to quantify these surface responses to rainfall events using land surface temperature (LST) derived from Earth observations (EOs). The authors analyzed two mesoscale regions in the Sahel and identified distinct differences in the strength of the short-term (<5 days) spectral variance, notably, a shift toward lower-frequency variability in forest pixels relative to nonforest areas and an increase in amplitude with decreasing vegetation cover. Consistent with these spectral signatures, areas of forest and, to a lesser extent, grassland regions were found to warm up more slowly than sparsely vegetated or barren pixels. The authors applied the same spectral analysis method to simulated LST data from the Joint UK Land Environment Simulator (JULES) land surface model. A reasonable level of agreement was found with the EO spectral analysis for two contrasting land surface regions. However, JULES shows a significant underestimate in the magnitude of the observed response to rain compared to EOs. A sensitivity analysis of the JULES model highlights an unrealistically high level of soil water availability as a key deficiency, which dampens the models response to rainfall events.
Abstract
Land–atmosphere feedbacks play an important role in the weather and climate of many semiarid regions. These feedbacks are strongly controlled by how the surface responds to precipitation events, which regulate the return of heat and moisture to the atmosphere. Characteristics of the surface can result in both differing amplitudes and rates of warming following rain. Spectral analysis is used to quantify these surface responses to rainfall events using land surface temperature (LST) derived from Earth observations (EOs). The authors analyzed two mesoscale regions in the Sahel and identified distinct differences in the strength of the short-term (<5 days) spectral variance, notably, a shift toward lower-frequency variability in forest pixels relative to nonforest areas and an increase in amplitude with decreasing vegetation cover. Consistent with these spectral signatures, areas of forest and, to a lesser extent, grassland regions were found to warm up more slowly than sparsely vegetated or barren pixels. The authors applied the same spectral analysis method to simulated LST data from the Joint UK Land Environment Simulator (JULES) land surface model. A reasonable level of agreement was found with the EO spectral analysis for two contrasting land surface regions. However, JULES shows a significant underestimate in the magnitude of the observed response to rain compared to EOs. A sensitivity analysis of the JULES model highlights an unrealistically high level of soil water availability as a key deficiency, which dampens the models response to rainfall events.
Abstract
Surface energy flux measurements from a sample of 10 flux network (FLUXNET) sites selected to represent a range of climate conditions and biome types were used to assess the performance of the Hadley Centre land surface model (Joint U.K. Land Environment Simulator; JULES). Because FLUXNET data are prone systematically to undermeasure surface fluxes, the model was evaluated by its ability to partition incoming radiant energy into evaporation and how such partition varies with atmospheric evaporative demand at annual, seasonal, weekly, and diurnal time scales. The model parameters from the GCM configuration were used. The overall performance was good, although weaknesses in model performance were identified that are associated with the specification of the leaf area index and plant rooting depth, and the representation of soil freezing.
Abstract
Surface energy flux measurements from a sample of 10 flux network (FLUXNET) sites selected to represent a range of climate conditions and biome types were used to assess the performance of the Hadley Centre land surface model (Joint U.K. Land Environment Simulator; JULES). Because FLUXNET data are prone systematically to undermeasure surface fluxes, the model was evaluated by its ability to partition incoming radiant energy into evaporation and how such partition varies with atmospheric evaporative demand at annual, seasonal, weekly, and diurnal time scales. The model parameters from the GCM configuration were used. The overall performance was good, although weaknesses in model performance were identified that are associated with the specification of the leaf area index and plant rooting depth, and the representation of soil freezing.
Abstract
A critical function of a land surface scheme, used in climate and weather prediction models, is to partition the energy from insolation into sensible and latent heat fluxes. Many use a soil moisture function to control the surface moisture fluxes through the transpiration. The validity and global distribution of the parameters used to calculate this soil moisture stress function are difficult to assess.
This work presents a method to map soil moisture stress globally from an earth observation vegetation index and precipitation data, and it compares the resulting distributions with output from the Joint U.K. Land Environment Simulator (JULES) land surface scheme. A number of model runs with different soil and vegetation parameters are compared. These examine the sensitivity of the seasonality of soil moisture stress, within the model, to the parameterization of soil hydraulic properties and the seasonality of leaf area index in the vegetation.
It is found that the seasonality of soil moisture within the model is more sensitive to the soil hydraulic properties than the leaf area index. The partitioning of throughfall into evaporation and runoff, in the model, is the dominant factor in determining the timing of soil moisture stress.
Abstract
A critical function of a land surface scheme, used in climate and weather prediction models, is to partition the energy from insolation into sensible and latent heat fluxes. Many use a soil moisture function to control the surface moisture fluxes through the transpiration. The validity and global distribution of the parameters used to calculate this soil moisture stress function are difficult to assess.
This work presents a method to map soil moisture stress globally from an earth observation vegetation index and precipitation data, and it compares the resulting distributions with output from the Joint U.K. Land Environment Simulator (JULES) land surface scheme. A number of model runs with different soil and vegetation parameters are compared. These examine the sensitivity of the seasonality of soil moisture stress, within the model, to the parameterization of soil hydraulic properties and the seasonality of leaf area index in the vegetation.
It is found that the seasonality of soil moisture within the model is more sensitive to the soil hydraulic properties than the leaf area index. The partitioning of throughfall into evaporation and runoff, in the model, is the dominant factor in determining the timing of soil moisture stress.
Abstract
Nine distributed hydrological models, forced with common meteorological inputs, simulated naturalized daily discharge from the Thames basin for 1963–2001. While model-dependent evaporative losses are critical for modeling mean discharge, multiple physical processes at many time scales influence the variability and timing of discharge. Here the use of cross-spectral analysis is advocated to measure how the average amplitude—and independently, the average phase—of modeled discharge differ from observed discharge at daily to decadal time scales. Simulation of the spectral properties of the model discharge via numerical manipulation of precipitation confirms that modeled transformation involves runoff generation and routing that amplify the annual cycle, while subsurface storage and routing of runoff between grid boxes introduces most of the autocorrelation and delays. Too much or too little modeled evaporation affects discharge variability, as do the capacity and time constants of modeled stores. Additionally, the performance of specific models would improve if four issues were tackled: 1) nonsinusoidal annual variations in model discharge (prolonged low base flow and shortened high base flow; three models), 2) excessive attenuation of high-frequency variability (three models), 3) excessive short-term variability in winter half years but too little variability in summer half years (two models), and 4) introduction of phase delays at the annual scale only during runoff generation (three models) or only during routing (one model). Cross-spectral analysis reveals how reruns of one model using alternative methods of runoff generation—designed to improve performance at the weekly to monthly time scales—degraded performance at the annual scale. The cross-spectral approach facilitates hydrological model diagnoses and development.
Abstract
Nine distributed hydrological models, forced with common meteorological inputs, simulated naturalized daily discharge from the Thames basin for 1963–2001. While model-dependent evaporative losses are critical for modeling mean discharge, multiple physical processes at many time scales influence the variability and timing of discharge. Here the use of cross-spectral analysis is advocated to measure how the average amplitude—and independently, the average phase—of modeled discharge differ from observed discharge at daily to decadal time scales. Simulation of the spectral properties of the model discharge via numerical manipulation of precipitation confirms that modeled transformation involves runoff generation and routing that amplify the annual cycle, while subsurface storage and routing of runoff between grid boxes introduces most of the autocorrelation and delays. Too much or too little modeled evaporation affects discharge variability, as do the capacity and time constants of modeled stores. Additionally, the performance of specific models would improve if four issues were tackled: 1) nonsinusoidal annual variations in model discharge (prolonged low base flow and shortened high base flow; three models), 2) excessive attenuation of high-frequency variability (three models), 3) excessive short-term variability in winter half years but too little variability in summer half years (two models), and 4) introduction of phase delays at the annual scale only during runoff generation (three models) or only during routing (one model). Cross-spectral analysis reveals how reruns of one model using alternative methods of runoff generation—designed to improve performance at the weekly to monthly time scales—degraded performance at the annual scale. The cross-spectral approach facilitates hydrological model diagnoses and development.
Abstract
Water-related impacts are among the most important consequences of increasing greenhouse gas concentrations. Changes in the global water cycle will also impact the carbon and nutrient cycles and vegetation patterns. There is already some evidence of increasing severity of floods and droughts and increasing water scarcity linked to increasing greenhouse gases. So far, however, the most important impacts on water resources are the direct interventions by humans, such as dams, water extractions, and river channel modifications. The Water and Global Change (WATCH) project is a major international initiative to bring together climate and water scientists to better understand the current and future water cycle. This paper summarizes the underlying motivation for the WATCH project and the major results from a series of papers published or soon to be published in the Journal of Hydrometeorology WATCH special collection. At its core is the Water Model Intercomparison Project (WaterMIP), which brings together a wide range of global hydrological and land surface models run with consistent driving data. It is clear that we still have considerable uncertainties in the future climate drivers and in how the river systems will respond to these changes. There is a grand challenge to the hydrological and climate communities to both reduce these uncertainties and communicate them to a wider society.
Abstract
Water-related impacts are among the most important consequences of increasing greenhouse gas concentrations. Changes in the global water cycle will also impact the carbon and nutrient cycles and vegetation patterns. There is already some evidence of increasing severity of floods and droughts and increasing water scarcity linked to increasing greenhouse gases. So far, however, the most important impacts on water resources are the direct interventions by humans, such as dams, water extractions, and river channel modifications. The Water and Global Change (WATCH) project is a major international initiative to bring together climate and water scientists to better understand the current and future water cycle. This paper summarizes the underlying motivation for the WATCH project and the major results from a series of papers published or soon to be published in the Journal of Hydrometeorology WATCH special collection. At its core is the Water Model Intercomparison Project (WaterMIP), which brings together a wide range of global hydrological and land surface models run with consistent driving data. It is clear that we still have considerable uncertainties in the future climate drivers and in how the river systems will respond to these changes. There is a grand challenge to the hydrological and climate communities to both reduce these uncertainties and communicate them to a wider society.
Abstract
Six land surface models and five global hydrological models participate in a model intercomparison project [Water Model Intercomparison Project (WaterMIP)], which for the first time compares simulation results of these different classes of models in a consistent way. In this paper, the simulation setup is described and aspects of the multimodel global terrestrial water balance are presented. All models were run at 0.5° spatial resolution for the global land areas for a 15-yr period (1985–99) using a newly developed global meteorological dataset. Simulated global terrestrial evapotranspiration, excluding Greenland and Antarctica, ranges from 415 to 586 mm yr−1 (from 60 000 to 85 000 km3 yr−1), and simulated runoff ranges from 290 to 457 mm yr−1 (from 42 000 to 66 000 km3 yr−1). Both the mean and median runoff fractions for the land surface models are lower than those of the global hydrological models, although the range is wider. Significant simulation differences between land surface and global hydrological models are found to be caused by the snow scheme employed. The physically based energy balance approach used by land surface models generally results in lower snow water equivalent values than the conceptual degree-day approach used by global hydrological models. Some differences in simulated runoff and evapotranspiration are explained by model parameterizations, although the processes included and parameterizations used are not distinct to either land surface models or global hydrological models. The results show that differences between models are a major source of uncertainty. Climate change impact studies thus need to use not only multiple climate models but also some other measure of uncertainty (e.g., multiple impact models).
Abstract
Six land surface models and five global hydrological models participate in a model intercomparison project [Water Model Intercomparison Project (WaterMIP)], which for the first time compares simulation results of these different classes of models in a consistent way. In this paper, the simulation setup is described and aspects of the multimodel global terrestrial water balance are presented. All models were run at 0.5° spatial resolution for the global land areas for a 15-yr period (1985–99) using a newly developed global meteorological dataset. Simulated global terrestrial evapotranspiration, excluding Greenland and Antarctica, ranges from 415 to 586 mm yr−1 (from 60 000 to 85 000 km3 yr−1), and simulated runoff ranges from 290 to 457 mm yr−1 (from 42 000 to 66 000 km3 yr−1). Both the mean and median runoff fractions for the land surface models are lower than those of the global hydrological models, although the range is wider. Significant simulation differences between land surface and global hydrological models are found to be caused by the snow scheme employed. The physically based energy balance approach used by land surface models generally results in lower snow water equivalent values than the conceptual degree-day approach used by global hydrological models. Some differences in simulated runoff and evapotranspiration are explained by model parameterizations, although the processes included and parameterizations used are not distinct to either land surface models or global hydrological models. The results show that differences between models are a major source of uncertainty. Climate change impact studies thus need to use not only multiple climate models but also some other measure of uncertainty (e.g., multiple impact models).