Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Gregory J. Stossmeister x
  • All content x
Clear All Modify Search
Gregory J. Stossmeister and Gary M. Barnes

Abstract

Observations in the boundary layer by the NOAA AOC WP-3D aircraft from 8 to 10 October 1985 document the development of a second vortex, which evolves into the circulation center for Tropical Storm Isabel. The new circulation develops just outside the radius of maximum winds and is associated with intensifying convection 90 km from the original center. The original center loses its identity as convection dissipates around it.

Low surface pressure, warm, dry air, and low equivalent potential temperature are found in the new center near its formation time. The new center is found beneath the downwind anvil of the intense convection in the rainband and appears to form over a period of 3–6 h, although significant changes in the storm-scale airflow north of the original center are occurring over the proceeding 24 h. The new center moves with a speed and direction similar to that of the original center. The observations of Isabel are compared to beat bursts, subsidence, and midlevel mesovortices that have been observed in tropical and midlatitude mesoscale convective systems. It is hypothesized that subsidence warming beneath the anvil, in the appropriate environment, could lower the pressure by several millibars and serve as an incipient perturbation for a tropical cyclone.

Full access
Robert A. Houze Jr., Shuyi S. Chen, Wen-Chau Lee, Robert F. Rogers, James A. Moore, Gregory J. Stossmeister, Michael M. Bell, Jasmine Cetrone, Wei Zhao, and S. Rita Brodzik

The Hurricane Rainband and Intensity Change Experiment (RAINEX) used three P3 aircraft aided by high-resolution numerical modeling and satellite communications to investigate the 2005 Hurricanes Katrina, Ophelia, and Rita. The aim was to increase the understanding of tropical cyclone intensity change by interactions between a tropical cyclone's inner core and rainbands. All three aircraft had dual-Doppler radars, with the Electra Doppler Radar (ELDORA) on board the Naval Research Laboratory's P3 aircraft, providing particularly detailed Doppler radar data. Numerical model forecasts helped plan the aircraft missions, and innovative communications and data transfer in real time allowed the flights to be coordinated from a ground-based operations center. The P3 aircraft released approximately 600 dropsondes in locations targeted for optimal coordination with the Doppler radar data, as guided by the operations center. The storms were observed in all stages of development, from tropical depression to category 5 hurricane. The data from RAINEX are readily available through an online Field Catalog and RAINEX Data Archive. The RAINEX dataset is illustrated in this article by a preliminary analysis of Hurricane Rita, which was documented by multiaircraft flights on five days 1) while a tropical storm, 2) while rapidly intensifying to a category 5 hurricane, 3) during an eye-wall replacement, 4) when the hurricane became asymmetric upon encountering environmental shear, and 5) just prior to landfall.

Full access
Bruce Albrecht, Virendra Ghate, Johannes Mohrmann, Robert Wood, Paquita Zuidema, Christopher Bretherton, Christian Schwartz, Edwin Eloranta, Susanne Glienke, Shaunna Donaher, Mampi Sarkar, Jeremy McGibbon, Alison D. Nugent, Raymond A. Shaw, Jacob Fugal, Patrick Minnis, Robindra Paliknoda, Louis Lussier, Jorgen Jensen, J. Vivekanandan, Scott Ellis, Peisang Tsai, Robert Rilling, Julie Haggerty, Teresa Campos, Meghan Stell, Michael Reeves, Stuart Beaton, John Allison, Gregory Stossmeister, Samuel Hall, and Sebastian Schmidt

Abstract

The Cloud System Evolution in the Trades (CSET) study was designed to describe and explain the evolution of the boundary layer aerosol, cloud, and thermodynamic structures along trajectories within the North Pacific trade winds. The study centered on seven round trips of the National Science Foundation–National Center for Atmospheric Research (NSF–NCAR) Gulfstream V (GV) between Sacramento, California, and Kona, Hawaii, between 7 July and 9 August 2015. The CSET observing strategy was to sample aerosol, cloud, and boundary layer properties upwind from the transition zone over the North Pacific and to resample these areas two days later. Global Forecast System forecast trajectories were used to plan the outbound flight to Hawaii with updated forecast trajectories setting the return flight plan two days later. Two key elements of the CSET observing system were the newly developed High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Cloud Radar (HCR) and the high-spectral-resolution lidar (HSRL). Together they provided unprecedented characterizations of aerosol, cloud, and precipitation structures that were combined with in situ measurements of aerosol, cloud, precipitation, and turbulence properties. The cloud systems sampled included solid stratocumulus infused with smoke from Canadian wildfires, mesoscale cloud–precipitation complexes, and patches of shallow cumuli in very clean environments. Ultraclean layers observed frequently near the top of the boundary layer were often associated with shallow, optically thin, layered veil clouds. The extensive aerosol, cloud, drizzle, and boundary layer sampling made over open areas of the northeast Pacific along 2-day trajectories during CSET will be an invaluable resource for modeling studies of boundary layer cloud system evolution and its governing physical processes.

Open access
David C. Fritts, Ronald B. Smith, Michael J. Taylor, James D. Doyle, Stephen D. Eckermann, Andreas Dörnbrack, Markus Rapp, Bifford P. Williams, P.-Dominique Pautet, Katrina Bossert, Neal R. Criddle, Carolyn A. Reynolds, P. Alex Reinecke, Michael Uddstrom, Michael J. Revell, Richard Turner, Bernd Kaifler, Johannes S. Wagner, Tyler Mixa, Christopher G. Kruse, Alison D. Nugent, Campbell D. Watson, Sonja Gisinger, Steven M. Smith, Ruth S. Lieberman, Brian Laughman, James J. Moore, William O. Brown, Julie A. Haggerty, Alison Rockwell, Gregory J. Stossmeister, Steven F. Williams, Gonzalo Hernandez, Damian J. Murphy, Andrew R. Klekociuk, Iain M. Reid, and Jun Ma

Abstract

The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was designed to quantify gravity wave (GW) dynamics and effects from orographic and other sources to regions of dissipation at high altitudes. The core DEEPWAVE field phase took place from May through July 2014 using a comprehensive suite of airborne and ground-based instruments providing measurements from Earth’s surface to ∼100 km. Austral winter was chosen to observe deep GW propagation to high altitudes. DEEPWAVE was based on South Island, New Zealand, to provide access to the New Zealand and Tasmanian “hotspots” of GW activity and additional GW sources over the Southern Ocean and Tasman Sea. To observe GWs up to ∼100 km, DEEPWAVE utilized three new instruments built specifically for the National Science Foundation (NSF)/National Center for Atmospheric Research (NCAR) Gulfstream V (GV): a Rayleigh lidar, a sodium resonance lidar, and an advanced mesosphere temperature mapper. These measurements were supplemented by in situ probes, dropsondes, and a microwave temperature profiler on the GV and by in situ probes and a Doppler lidar aboard the German DLR Falcon. Extensive ground-based instrumentation and radiosondes were deployed on South Island, Tasmania, and Southern Ocean islands. Deep orographic GWs were a primary target but multiple flights also observed deep GWs arising from deep convection, jet streams, and frontal systems. Highlights include the following: 1) strong orographic GW forcing accompanying strong cross-mountain flows, 2) strong high-altitude responses even when orographic forcing was weak, 3) large-scale GWs at high altitudes arising from jet stream sources, and 4) significant flight-level energy fluxes and often very large momentum fluxes at high altitudes.

Full access
Britton B. Stephens, Matthew C. Long, Ralph F. Keeling, Eric A. Kort, Colm Sweeney, Eric C. Apel, Elliot L. Atlas, Stuart Beaton, Jonathan D. Bent, Nicola J. Blake, James F. Bresch, Joanna Casey, Bruce C. Daube, Minghui Diao, Ernesto Diaz, Heidi Dierssen, Valeria Donets, Bo-Cai Gao, Michelle Gierach, Robert Green, Justin Haag, Matthew Hayman, Alan J. Hills, Martín S. Hoecker-Martínez, Shawn B. Honomichl, Rebecca S. Hornbrook, Jorgen B. Jensen, Rong-Rong Li, Ian McCubbin, Kathryn McKain, Eric J. Morgan, Scott Nolte, Jordan G. Powers, Bryan Rainwater, Kaylan Randolph, Mike Reeves, Sue M. Schauffler, Katherine Smith, Mackenzie Smith, Jeff Stith, Gregory Stossmeister, Darin W. Toohey, and Andrew S. Watt

Abstract

The Southern Ocean plays a critical role in the global climate system by mediating atmosphere–ocean partitioning of heat and carbon dioxide. However, Earth system models are demonstrably deficient in the Southern Ocean, leading to large uncertainties in future air–sea CO2 flux projections under climate warming and incomplete interpretations of natural variability on interannual to geologic time scales. Here, we describe a recent aircraft observational campaign, the O2/N2 Ratio and CO2 Airborne Southern Ocean (ORCAS) study, which collected measurements over the Southern Ocean during January and February 2016. The primary research objective of the ORCAS campaign was to improve observational constraints on the seasonal exchange of atmospheric carbon dioxide and oxygen with the Southern Ocean. The campaign also included measurements of anthropogenic and marine biogenic reactive gases; high-resolution, hyperspectral ocean color imaging of the ocean surface; and microphysical data relevant for understanding and modeling cloud processes. In each of these components of the ORCAS project, the campaign has significantly expanded the amount of observational data available for this remote region. Ongoing research based on these observations will contribute to advancing our understanding of this climatically important system across a range of topics including carbon cycling, atmospheric chemistry and transport, and cloud physics. This article presents an overview of the scientific and methodological aspects of the ORCAS project and highlights early findings.

Open access