Search Results

You are looking at 1 - 10 of 39 items for

  • Author or Editor: Gudrun Magnusdottir x
  • All content x
Clear All Modify Search
Gudrun Magnusdottir

Abstract

The response of the atmospheric winter circulation in both hemispheres to changes in the meridional gradient of sea surface temperature (SST) is examined in an atmospheric general circulation model. Climatological SSTs are employed for the control run. The other runs differ in that a zonally symmetric component is added to or subtracted from the climatological SST field. The meridional structure of the variation in SST gradient is based on the observed change in zonally averaged SST over the last century. The SST trend has maxima of about 1 K at high latitudes of both hemispheres. Elsewhere, the increase in SST over the last century is fairly uniform at about 0.5 K.

In both hemispheres the response to decreased SST gradients is decreased baroclinity in the lower troposphere and increased baroclinity in the upper troposphere, with the reverse response when the SST gradient is increased. Because the cases with decreased SST gradients correspond to warmer SSTs everywhere, they are accompanied by an increase in moisture and a general expansion of the troposphere. The warming cases in the Northern Hemisphere (NH) winter are marked by greatly increased tropical convection, a stronger subtropical jet that is shifted upward and equatorward, and a robust stationary-wave response. Many aspects of the response are remarkably consistent among the different warming experiments, both in pattern and amplitude. The storm-track response is weaker but still consistent among the different warming experiments. Despite general decrease in storm-track activity, there is a tendency for the upper-level NH storm tracks to strengthen at their downstream end and to weaken at their upstream and northward end. When the zonally symmetric SST anomaly field is subtracted from the climatological SST (resulting in lower SST with increased latitudinal gradient), the response is different in many fields and is considerably weaker.

In the winter Southern Hemisphere the change in baroclinity of the low-level flow plays a greater role in the response than in the winter NH. The response in the storm track is zonal with a decrease in midlatitude storm-track activity in the warming cases and an increase in the case that has an increased SST gradient (and cooler SST). There is close correspondence between the pattern of response in all the experiments, irrespective of the sign of the SST anomaly field.

Full access
Courtenay Strong and Gudrun Magnusdottir

Abstract

The leading pattern of extratropical Pacific sea surface temperature variability [the Pacific decadal oscillation (PDO)] is shown to depend on observed variability in the spatiotemporal distribution of tropospheric Rossby wave breaking (RWB), where RWB is the irreversible overturning of potential vorticity on isentropic surfaces. Composite analyses based on hundreds of RWB cases show that anticyclonic (cyclonic) RWB is associated with a warm, moist (cool, dry) column that extends down to a surface anticyclonic (cyclonic) circulation, and that the moisture and temperature advection associated with the surface circulation patterns force turbulent heat flux anomalies that project onto the spatial pattern of the PDO. The RWB patterns that are relevant to the PDO are closely tied to El Niño–Southern Oscillation, the Pacific–North American pattern, and the northern annular mode. These results explain the free troposphere-to-surface segment of the atmospheric bridge concept wherein El Niño anomalies emerge in summer and modify circulation patterns that act over several months to force sea surface temperature anomalies in the extratropical Pacific during late winter or early spring. Leading patterns of RWB account for a significant fraction of PDO interannual variability for any month of the year. A multilinear model is developed in which the January mean PDO index for 1958–2006 is regressed upon the leading principal components of cyclonic and anticyclonic RWB from the immediately preceding winter and summer months (four indexes in all), accounting for more than two-thirds of the variance.

Full access
Wenchang Yang and Gudrun Magnusdottir

Abstract

The intertropical convergence zone (ITCZ) in the east Pacific is located north of the equator during most of the year. In daily data it is most variable in March–April when it may be located north of the equator (nITCZ), on both sides of the equator (dITCZ), or south of the equator (sITCZ), or it may be absent (when convection does not take on a zonally elongated form). Additionally, in strong El Niño years it is located on the equator during the boreal winter half-year. Here the focus is on conditions when the ITCZ has a presence south of the equator (dITCZ, sITCZ) and composites of various fields are compared to “normal conditions” [i.e., when the ITCZ is north of the equator (nITCZ)]. Composites of sea surface temperature (SST), precipitation, outgoing longwave radiation, and the upper-level circulation show very similar patterns for dITCZ and sITCZ days, where the latter cases have almost double the amplitude of the former. The sITCZ state is viewed as an extreme case of the dITCZ state. Both are found to be related to the central Pacific (CP) La Niña with anomalous positive SST and atmospheric heating over the western tropical Pacific and anomalous negative SST and cooling over the central tropical Pacific. Ocean–atmosphere interaction plays an important role in developing the dITCZ and sITCZ anomalies. These daily composite patterns can be reproduced by the regression of monthly fields on the cold CP El Niño–Southern Oscillation mode, suggesting that the interannual rather than day-to-day variability dominates in contributing to the patterns of the composites.

Full access
Courtenay Strong and Gudrun Magnusdottir

Abstract

The role of Rossby wave breaking (RWB) is explored in the transient response of an atmospheric general circulation model to boundary forcing by sea ice anomalies related to the North Atlantic Oscillation (NAO). When the NCAR Community Climate Model, version 3, was forced by an exaggerated sea ice extent anomaly corresponding to one arising from a positive NAO, a localized baroclinic response developed and evolved into a larger-scale equivalent barotropic pattern resembling the negative polarity of the NAO. The initial baroclinic response shifted the phase speeds of the dominant eddies away from a critical value equal to the background zonal flow speed, resulting in significant changes in the spatial distribution of RWB. The forcing of the background zonal flow by the changes in RWB accounts for 88% of the temporal pattern of the response and 80% of the spatial pattern of the zonally averaged response. Although results here focus on one experiment, this “RWB critical line mechanism” appears to be relevant to understanding the equilibrium response in a broad class of boundary forcing experiments given increasingly clear connections among the northern annular mode, jet latitude shifts, and RWB.

Full access
Courtenay Strong and Gudrun Magnusdottir

Abstract

Objective analysis of several hundred thousand anticyclonic and cyclonic breaking Rossby waves is performed for the Northern Hemisphere (NH) winters of 1958–2006. A winter climatology of both anticyclonic and cyclonic Rossby wave breaking (RWB) frequency and size (zonal extent) is presented for the 350-K isentropic surface over the NH, and the spatial distribution of RWB is shown to agree with theoretical ideas of RWB in shear flow.

Composites of the two types of RWB reveal their characteristic sea level pressure anomalies, upper- and lower-tropospheric velocity fields, and forcing of the upper-tropospheric zonal flow. It is shown how these signatures project onto the centers of action and force the velocity patterns associated with the North Atlantic Oscillation (NAO) and Northern Hemisphere annular mode (NAM). Previous studies have presented evidence that anticyclonic (cyclonic) breaking leads to the positive (negative) polarity of the NAO, and this relationship is confirmed for RWB over the midlatitudes centered near 50°N. However, an opposite and statistically significant relationship, in which cyclonic RWB forces the positive NAO and anticyclonic RWB forces the negative NAO, is shown over regions 20° to the north and south, centered at 70° and 30°N, respectively.

On a winter mean basis, the frequency of RWB over objectively defined regions covering 12% of the area of the NH accounts for 95% of the NAO index and 92% of the NAM index. A 6-hourly analysis of all the winters indicates that RWB over the objectively defined regions affects the NAO/NAM without a time lag. Details of the objective wave-breaking analysis method are provided in the .

Full access
Yannick Peings and Gudrun Magnusdottir

Abstract

The wintertime Northern Hemisphere (NH) atmospheric circulation response to current (2007–12) and projected (2080–99) Arctic sea ice decline is examined with the latest version of the Community Atmospheric Model (CAM5). The numerical experiments suggest that the current sea ice conditions force a remote atmospheric response in late winter that favors cold land surface temperatures over midlatitudes, as has been observed in recent years. Anomalous Rossby waves forced by the sea ice anomalies penetrate into the stratosphere in February and weaken the stratospheric polar vortex, resulting in negative anomalies of the northern annular mode (NAM) that propagate downward during the following weeks, especially over the North Pacific. The seasonality of the response is attributed to timing of the phasing between the forced and climatological waves. When sea ice concentration taken from projections of conditions at the end of the twenty-first century is prescribed to the model, negative anomalies of the NAM are visible in the troposphere, both in early and late winter. This response is mainly driven by the large warming of the lower troposphere over the Arctic, as little impact is found in the stratosphere in this experiment. As a result of the thermal expansion of the polar troposphere, the westerly flow is decelerated and a weak but statistically significant increase of the midlatitude meanders is identified. However, the thermodynamical response extends beyond the Arctic and offsets the dynamical effect, such that the stronger sea ice forcing has limited impact on the intensity of cold extremes over midlatitudes.

Full access
Gudrun Magnusdottir and Peter H. Haynes

Abstract

The authors consider quasi-stationary planetary waves that are excited by localized midlatitude orographic forcing in a three-dimensional primitive-equation model. The waves propagate toward subtropical regions where the background flow is weak and the waves are therefore likely to break. Potential vorticity fields on isentropic surfaces are used to diagnose wave breaking. Nonlinear pseudomomentum conservation relations are used to quantify the absorption–reflection behavior of the wave-breaking regions. Three different three-dimensional flow configurations are represented: (i) a barotropic flow, (ii) a simple baroclinic flow, and (iii) a more realistic baroclinic flow. In order to allow the propagation of large-scale waves to be studied over extended periods for the baroclinic flows, the authors apply a mechanical damping at low levels to delay the onset of baroclinic instability.

For basic states (i) and (ii) the forcing excites a localized wave train that propagates into the subtropics and, for large enough wave amplitude, gives rise to a reflected wave train propagating along a great circle route into midlatitudes. It is argued that the reflection is analogous to the nonlinear reflection predicted by Rossby wave critical layer theory. Both the directly forced wave train and the reflected wave train are quite barotropic in character and decay due to the damping. However, the low-level damping does not inhibit the reflection. The authors also consider the effect of thermal damping on the absorption–reflection behavior and find that, for realistic wave amplitudes, reflection is not inhibited by thermal damping with a timescale as low as 5 days.

For the third basic state it is found that the small-amplitude response has the character of a longitudinally propagating wave train that slowly decays with distance away from the forcing. The authors argue that part of this decay is due to low-latitude absorption and show that at larger amplitudes the decay is inhibited by nonlinear reflection.

The authors also compare for each basic state absorption–reflection behavior for isolated wave trains and for waves forced in a single longitudinal wavenumber.

Full access
Ashley E. Payne and Gudrun Magnusdottir

Abstract

A large-scale analysis of landfalling atmospheric rivers (ARs) along the west coast of North America and their association with the upper-tropospheric flow is performed for the extended winter (November–March) for the years 1979–2011 using Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis data. The climatology, relationship to the El Niño–Southern Oscillation and the Madden–Julian oscillation, and upper-level characteristics of approximately 750 landfalling ARs are presented based on the 85th percentile of peak daily moisture flux. AR occurrence along the West Coast is dominated by early season events. In composites of upper-level fields during AR occurrences, certain characteristics stand out irrespective of the tropical climate indices. This suggests that extratropical dynamical processes play a key role in AR dynamics.

The influence of the large-scale circulation on AR intensity prior to landfall is examined by objectively selecting an extreme subset of 112 landfalling AR dates representing the 95th percentile of strongest cases. Each landfalling AR date that is identified is traced backward in time using a novel semiautomated tracking algorithm based on spatially and temporally connected organized features in integrated moisture transport. Composites of dynamical fields following the eastward progression of ARs show a close relationship of the location of the jet, Rossby wave propagation, and anticyclonic Rossby wave breaking in the upper troposphere of the eastern Pacific and moisture transport in the lower troposphere. Comparison between the strongest and the weakest ARs within the most extreme subset shows differences in both the intensity of moisture transport and the scale and development of anticyclonic Rossby wave breaking in the eastern Pacific.

Full access
Christopher C. Walker and Gudrun Magnusdottir

Abstract

The nonlinear behavior of planetary waves excited by midlatitude topography is considered in an atmospheric GCM. The GCM is run at standard resolution (T42) and includes all of the complexity normally associated with a GCM. Only two simplifications are made to the model. First, it is run in perpetual January mode, so that the solar radiation takes the diurnally varying value associated with 15 January. Second, the lower boundary is simplified so that it is entirely ocean with zonally symmetric SSTs. Planetary waves are excited by Gaussian-shaped topography centered at 45°N, 90°W. As in earlier studies, the excited wave train propagates toward low latitudes where, for sufficiently large forcing amplitude (i.e., height of topography), the wave will break. Several different experiments are run with different mountain heights. Each experiment is run for a total of 4015 days.

The response of the model depends on the height of the mountain. For the small-amplitude mountain (500 m), the wave is dissipated at low latitudes near its critical latitude. For large-amplitude mountains (2000, 3000, and 4000 m), wave breaking and nonlinear reflection out of the wave breaking region is observed. The spatial character of the reflected wave train is similar to that detected in earlier studies with more idealized models.

Full access
John T. Abatzoglou and Gudrun Magnusdottir

Abstract

Forty-six years of daily averaged NCEP–NCAR reanalysis data are used to identify the occurrence of planetary wave breaking (PWB) in the subtropical upper troposphere. As large-amplitude waves propagate into the subtropics where the zonal flow is weak, they may break. PWB is diagnosed by observing the large-scale meridional overturning of potential vorticity (PV) contours on isentropic surfaces near the subtropical tropopause. PWB occurs most often during summer, and almost exclusively over the subtropical ocean basins in the Northern Hemisphere. The seasonal evolution of the zonal flow (and the associated latitudinal PV gradient) regulates the location and frequency of PWB. Significant interannual variability in PWB is associated with well-known modes of climate variability.

One of the most interesting dynamical consequences of PWB is the possibility of nonlinear reflection poleward out of the wave-breaking region. Modeling studies have found nonlinear reflection following PWB. Observations show that about 36% of all PWB events are followed by nonlinear reflection back into midlatitudes. In these cases, a poleward-arching wave train can be seen propagating away from the wave-breaking region following breaking. It is suggested that a sufficiently strong latitudinal PV gradient must be present downstream of the wave-breaking region for reflection to take place. The proportion of PWB events that is reflective stays rather constant through the year, with slightly higher numbers in spring and fall compared to those in winter and summer.

Full access