Search Results
You are looking at 1 - 9 of 9 items for
- Author or Editor: Gunnar Voet x
- Refine by Access: All Content x
Abstract
An array of moorings deployed off the coast of Palau is used to characterize submesoscale vorticity generated by broadband upper-ocean flows around the island. Palau is a steep-sided archipelago lying in the path of strong zonal geostrophic currents, but tides and inertial oscillations are energetic as well. Vorticity is correspondingly broadband, with both mean and variance O(f) in a surface and subsurface layer (where f is the local Coriolis frequency). However, while subinertial vorticity is linearly related to the incident subinertial current, the relationship between superinertial velocity and superinertial vorticity is weak. Instead, there is a strong nonlinear relationship between subinertial velocity and superinertial vorticity. A key observation of this study is that during periods of strong westward flow, vorticity in the tidal bands increases by an order of magnitude. Empirical orthogonal functions (EOFs) of velocity show this nonstationary, superinertial vorticity variance is due to eddy motion at the scale of the array. Comparison of kinetic energy and vorticity time series suggest that lateral shear against the island varies with the subinertial flow, while tidal currents lead to flow reversals inshore of the recirculating wake and possibly eddy shedding. This is a departure from the idealized analog typically drawn on in island wake studies: a cylinder in a steady flow. In that case, eddy formation occurs at a frequency dependent on the scale of the obstacle and strength of the flow alone. The observed tidal formation frequency likely modulates the strength of submesoscale wake eddies and thus their dynamic relationship to the mesoscale wake downstream of Palau.
Abstract
An array of moorings deployed off the coast of Palau is used to characterize submesoscale vorticity generated by broadband upper-ocean flows around the island. Palau is a steep-sided archipelago lying in the path of strong zonal geostrophic currents, but tides and inertial oscillations are energetic as well. Vorticity is correspondingly broadband, with both mean and variance O(f) in a surface and subsurface layer (where f is the local Coriolis frequency). However, while subinertial vorticity is linearly related to the incident subinertial current, the relationship between superinertial velocity and superinertial vorticity is weak. Instead, there is a strong nonlinear relationship between subinertial velocity and superinertial vorticity. A key observation of this study is that during periods of strong westward flow, vorticity in the tidal bands increases by an order of magnitude. Empirical orthogonal functions (EOFs) of velocity show this nonstationary, superinertial vorticity variance is due to eddy motion at the scale of the array. Comparison of kinetic energy and vorticity time series suggest that lateral shear against the island varies with the subinertial flow, while tidal currents lead to flow reversals inshore of the recirculating wake and possibly eddy shedding. This is a departure from the idealized analog typically drawn on in island wake studies: a cylinder in a steady flow. In that case, eddy formation occurs at a frequency dependent on the scale of the obstacle and strength of the flow alone. The observed tidal formation frequency likely modulates the strength of submesoscale wake eddies and thus their dynamic relationship to the mesoscale wake downstream of Palau.
Abstract
Towed shipboard and moored observations show internal gravity waves over a tall, supercritical submarine ridge that reaches to 1000 m below the ocean surface in the tropical western Pacific north of Palau. The lee-wave or topographic Froude number, Nh
0/U
0 (where N is the buoyancy frequency, h
0 the ridge height, and U
0 the farfield velocity), ranged between 25 and 140. The waves were generated by a superposition of tidal and low-frequency flows and thus had two distinct energy sources with combined amplitudes of up to 0.2 m s−1. Local breaking of the waves led to enhanced rates of dissipation of turbulent kinetic energy reaching above 10−6 W kg−1 in the lee of the ridge near topography. Turbulence observations showed a stark contrast between conditions at spring and neap tide. During spring tide, when the tidal flow dominated, turbulence was approximately equally distributed around both sides of the ridge. During neap tide, when the mean flow dominated over tidal oscillations, turbulence was mostly observed on the downstream side of the ridge relative to the mean flow. The drag exerted by the ridge on the flow, estimated to
Abstract
Towed shipboard and moored observations show internal gravity waves over a tall, supercritical submarine ridge that reaches to 1000 m below the ocean surface in the tropical western Pacific north of Palau. The lee-wave or topographic Froude number, Nh
0/U
0 (where N is the buoyancy frequency, h
0 the ridge height, and U
0 the farfield velocity), ranged between 25 and 140. The waves were generated by a superposition of tidal and low-frequency flows and thus had two distinct energy sources with combined amplitudes of up to 0.2 m s−1. Local breaking of the waves led to enhanced rates of dissipation of turbulent kinetic energy reaching above 10−6 W kg−1 in the lee of the ridge near topography. Turbulence observations showed a stark contrast between conditions at spring and neap tide. During spring tide, when the tidal flow dominated, turbulence was approximately equally distributed around both sides of the ridge. During neap tide, when the mean flow dominated over tidal oscillations, turbulence was mostly observed on the downstream side of the ridge relative to the mean flow. The drag exerted by the ridge on the flow, estimated to
Abstract
The La Jolla Canyon System (LJCS) is a small, steep, shelf-incising canyon offshore of San Diego, California. Observations conducted in the fall of 2016 capture the dynamics of internal tides and turbulence patterns. Semidiurnal (D2) energy flux was oriented up-canyon; 62% ± 20% of the signal was contained in mode 1 at the offshore mooring. The observed mode-1 D2 tide was partly standing based on the ratio of group speed times energy c g E and energy flux F. Enhanced dissipation occurred near the canyon head at middepths associated with elevated strain arising from the standing wave pattern. Modes 2–5 were progressive, and energy fluxes associated with these modes were oriented down-canyon, suggesting that incident mode-1 waves were back-reflected and scattered. Flux integrated over all modes across a given canyon cross section was always onshore and generally decreased moving shoreward (from 240 ± 15 to 5 ± 0.3 kW), with a 50-kW increase in flux occurring on a section inshore of the canyon’s major bend, possibly due to reflection of incident waves from the supercritical sidewalls of the bend. Flux convergence from canyon mouth to head was balanced by the volume-integrated dissipation observed. By comparing energy budgets from a global compendium of canyons with sufficient observations (six in total), a similar balance was found. One exception was Juan de Fuca Canyon, where such a balance was not found, likely due to its nontidal flows. These results suggest that internal tides incident at the mouth of a canyon system are dissipated therein rather than leaking over the sidewalls or siphoning energy to other wave frequencies.
Abstract
The La Jolla Canyon System (LJCS) is a small, steep, shelf-incising canyon offshore of San Diego, California. Observations conducted in the fall of 2016 capture the dynamics of internal tides and turbulence patterns. Semidiurnal (D2) energy flux was oriented up-canyon; 62% ± 20% of the signal was contained in mode 1 at the offshore mooring. The observed mode-1 D2 tide was partly standing based on the ratio of group speed times energy c g E and energy flux F. Enhanced dissipation occurred near the canyon head at middepths associated with elevated strain arising from the standing wave pattern. Modes 2–5 were progressive, and energy fluxes associated with these modes were oriented down-canyon, suggesting that incident mode-1 waves were back-reflected and scattered. Flux integrated over all modes across a given canyon cross section was always onshore and generally decreased moving shoreward (from 240 ± 15 to 5 ± 0.3 kW), with a 50-kW increase in flux occurring on a section inshore of the canyon’s major bend, possibly due to reflection of incident waves from the supercritical sidewalls of the bend. Flux convergence from canyon mouth to head was balanced by the volume-integrated dissipation observed. By comparing energy budgets from a global compendium of canyons with sufficient observations (six in total), a similar balance was found. One exception was Juan de Fuca Canyon, where such a balance was not found, likely due to its nontidal flows. These results suggest that internal tides incident at the mouth of a canyon system are dissipated therein rather than leaking over the sidewalls or siphoning energy to other wave frequencies.
Abstract
The abyssal flow of water through the Samoan Passage accounts for the majority of the bottom water renewal in the North Pacific, thereby making it an important element of the meridional overturning circulation. Here the authors report recent measurements of the flow of dense waters of Antarctic and North Atlantic origin through the Samoan Passage. A 15-month long moored time series of velocity and temperature of the abyssal flow was recorded between 2012 and 2013. This allows for an update of the only prior volume transport time series from the Samoan Passage from WOCE moored measurements between 1992 and 1994. While highly variable on multiple time scales, the overall pattern of the abyssal flow through the Samoan Passage was remarkably steady. The time-mean northward volume transport of about 5.4 Sv (1 Sv ≡ 106 m3 s−1) in 2012/13 was reduced compared to 6.0 Sv measured between 1992 and 1994. This volume transport reduction is significant within 68% confidence limits (±0.4 Sv) but not at 95% confidence limits (±0.6 Sv). In agreement with recent studies of the abyssal Pacific, the bottom flow through the Samoan Passage warmed significantly on average by 1 × 10−3°C yr−1 over the past two decades, as observed both in moored and shipboard hydrographic observations. While the warming reflects the recently observed increasing role of the deep oceans for heat uptake, decreasing flow through Samoan Passage may indicate a future weakening of this trend for the abyssal North Pacific.
Abstract
The abyssal flow of water through the Samoan Passage accounts for the majority of the bottom water renewal in the North Pacific, thereby making it an important element of the meridional overturning circulation. Here the authors report recent measurements of the flow of dense waters of Antarctic and North Atlantic origin through the Samoan Passage. A 15-month long moored time series of velocity and temperature of the abyssal flow was recorded between 2012 and 2013. This allows for an update of the only prior volume transport time series from the Samoan Passage from WOCE moored measurements between 1992 and 1994. While highly variable on multiple time scales, the overall pattern of the abyssal flow through the Samoan Passage was remarkably steady. The time-mean northward volume transport of about 5.4 Sv (1 Sv ≡ 106 m3 s−1) in 2012/13 was reduced compared to 6.0 Sv measured between 1992 and 1994. This volume transport reduction is significant within 68% confidence limits (±0.4 Sv) but not at 95% confidence limits (±0.6 Sv). In agreement with recent studies of the abyssal Pacific, the bottom flow through the Samoan Passage warmed significantly on average by 1 × 10−3°C yr−1 over the past two decades, as observed both in moored and shipboard hydrographic observations. While the warming reflects the recently observed increasing role of the deep oceans for heat uptake, decreasing flow through Samoan Passage may indicate a future weakening of this trend for the abyssal North Pacific.
Abstract
The flow of dense water through the Samoan Passage accounts for the major part of the bottom water renewal in the North Pacific and is thus an important element of the Pacific meridional overturning circulation. A recent set of highly resolved measurements used CTD/LADCP, a microstructure profiler, and moorings to constrain the complex pathways and variability of the abyssal flow. Volume transport estimates for the dense northward current at several sections across the passage, calculated using direct velocity measurements from LADCPs, range from 3.9 × 106 to 6.0 × 106 ± 1 × 106 m3 s−1. The deep channel to the east and shallower pathways to the west carried about equal amounts of this volume transport, with the densest water flowing along the main eastern channel. Turbulent dissipation rates estimated from Thorpe scales and direct microstructure agree to within a factor of 2 and provide a region-averaged value of O(10−8) W kg−1 for layers colder than 0.8°C. Associated diapycnal diffusivities and downward turbulent heat fluxes are about 5 × 10−3 m2 s−1 and O(10) W m−2, respectively. However, heat budgets suggest heat fluxes 2–6 times greater. In the vicinity of one of the major sills of the passage, highly resolved Thorpe-inferred diffusivity and heat flux were over 10 times larger than the region-averaged values, suggesting the mismatch is likely due to undersampled mixing hotspots.
Abstract
The flow of dense water through the Samoan Passage accounts for the major part of the bottom water renewal in the North Pacific and is thus an important element of the Pacific meridional overturning circulation. A recent set of highly resolved measurements used CTD/LADCP, a microstructure profiler, and moorings to constrain the complex pathways and variability of the abyssal flow. Volume transport estimates for the dense northward current at several sections across the passage, calculated using direct velocity measurements from LADCPs, range from 3.9 × 106 to 6.0 × 106 ± 1 × 106 m3 s−1. The deep channel to the east and shallower pathways to the west carried about equal amounts of this volume transport, with the densest water flowing along the main eastern channel. Turbulent dissipation rates estimated from Thorpe scales and direct microstructure agree to within a factor of 2 and provide a region-averaged value of O(10−8) W kg−1 for layers colder than 0.8°C. Associated diapycnal diffusivities and downward turbulent heat fluxes are about 5 × 10−3 m2 s−1 and O(10) W m−2, respectively. However, heat budgets suggest heat fluxes 2–6 times greater. In the vicinity of one of the major sills of the passage, highly resolved Thorpe-inferred diffusivity and heat flux were over 10 times larger than the region-averaged values, suggesting the mismatch is likely due to undersampled mixing hotspots.
Abstract
The main source feeding the abyssal circulation of the North Pacific is the deep, northward flow of 5–6 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) through the Samoan Passage. A recent field campaign has shown that this flow is hydraulically controlled and that it experiences hydraulic jumps accompanied by strong mixing and dissipation concentrated near several deep sills. By our estimates, the diapycnal density flux associated with this mixing is considerably larger than the diapycnal flux across a typical isopycnal surface extending over the abyssal North Pacific. According to historical hydrographic observations, a second source of abyssal water for the North Pacific is 2.3–2.8 Sv of the dense flow that is diverted around the Manihiki Plateau to the east, bypassing the Samoan Passage. This bypass flow is not confined to a channel and is therefore less likely to experience the strong mixing that is associated with hydraulic transitions. The partitioning of flux between the two branches of the deep flow could therefore be relevant to the distribution of Pacific abyssal mixing. To gain insight into the factors that control the partitioning between these two branches, we develop an abyssal and equator-proximal extension of the “island rule.” Novel features include provisions for the presence of hydraulic jumps as well as identification of an appropriate integration circuit for an abyssal layer to the east of the island. Evaluation of the corresponding circulation integral leads to a prediction of 0.4–2.4 Sv of bypass flow. The circulation integral clearly identifies dissipation and frictional drag effects within the Samoan Passage as crucial elements in partitioning the flow.
Abstract
The main source feeding the abyssal circulation of the North Pacific is the deep, northward flow of 5–6 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) through the Samoan Passage. A recent field campaign has shown that this flow is hydraulically controlled and that it experiences hydraulic jumps accompanied by strong mixing and dissipation concentrated near several deep sills. By our estimates, the diapycnal density flux associated with this mixing is considerably larger than the diapycnal flux across a typical isopycnal surface extending over the abyssal North Pacific. According to historical hydrographic observations, a second source of abyssal water for the North Pacific is 2.3–2.8 Sv of the dense flow that is diverted around the Manihiki Plateau to the east, bypassing the Samoan Passage. This bypass flow is not confined to a channel and is therefore less likely to experience the strong mixing that is associated with hydraulic transitions. The partitioning of flux between the two branches of the deep flow could therefore be relevant to the distribution of Pacific abyssal mixing. To gain insight into the factors that control the partitioning between these two branches, we develop an abyssal and equator-proximal extension of the “island rule.” Novel features include provisions for the presence of hydraulic jumps as well as identification of an appropriate integration circuit for an abyssal layer to the east of the island. Evaluation of the corresponding circulation integral leads to a prediction of 0.4–2.4 Sv of bypass flow. The circulation integral clearly identifies dissipation and frictional drag effects within the Samoan Passage as crucial elements in partitioning the flow.
Abstract
Abyssal waters forming the lower limb of the global overturning circulation flow through the Samoan Passage and are modified by intense mixing. Thorpe-scale-based estimates of dissipation from moored profilers deployed on top of two sills for 17 months reveal that turbulence is continuously generated in the passage. Overturns were observed in a density band in which the Richardson number was often smaller than ¼, consistent with shear instability occurring at the upper interface of the fast-flowing bottom water layer. The magnitude of dissipation was found to be stable on long time scales from weeks to months. A second array of 12 moored profilers deployed for a shorter duration but profiling at higher frequency was able to resolve variability in dissipation on time scales from days to hours. At some mooring locations, near-inertial and tidal modulation of the dissipation rate was observed. However, the modulation was not spatially coherent across the passage. The magnitude and vertical structure of dissipation from observations at one of the major sills is compared with an idealized 2D numerical simulation that includes a barotropic tidal forcing. Depth-integrated dissipation rates agree between model and observations to within a factor of 3. The tide has a negligible effect on the mean dissipation. These observations reinforce the notion that the Samoan Passage is an important mixing hot spot in the global ocean where waters are being transformed continuously.
Abstract
Abyssal waters forming the lower limb of the global overturning circulation flow through the Samoan Passage and are modified by intense mixing. Thorpe-scale-based estimates of dissipation from moored profilers deployed on top of two sills for 17 months reveal that turbulence is continuously generated in the passage. Overturns were observed in a density band in which the Richardson number was often smaller than ¼, consistent with shear instability occurring at the upper interface of the fast-flowing bottom water layer. The magnitude of dissipation was found to be stable on long time scales from weeks to months. A second array of 12 moored profilers deployed for a shorter duration but profiling at higher frequency was able to resolve variability in dissipation on time scales from days to hours. At some mooring locations, near-inertial and tidal modulation of the dissipation rate was observed. However, the modulation was not spatially coherent across the passage. The magnitude and vertical structure of dissipation from observations at one of the major sills is compared with an idealized 2D numerical simulation that includes a barotropic tidal forcing. Depth-integrated dissipation rates agree between model and observations to within a factor of 3. The tide has a negligible effect on the mean dissipation. These observations reinforce the notion that the Samoan Passage is an important mixing hot spot in the global ocean where waters are being transformed continuously.
Abstract
The abyssal southwest Pacific basin has warmed significantly between 1992 and 2017, consistent with warming along the bottom limb of the meridional overturning circulation seen throughout the global oceans. Here we present a framework for assessing the abyssal heat budget that includes the time-dependent unsteady effects of decadal warming and direct and indirect estimates of diapycnal mixing from microscale temperature measurements and finescale parameterizations. The unsteady terms estimated from the decadal warming rate are shown to be within a factor of 3 of the steady-state terms in the abyssal heat budget for the coldest portion of the water column and therefore cannot be ignored. We show that a reduction in the lateral heat flux for the coldest temperature classes compensated by an increase in warmer waters advected into the basin has important implications for the heat balance and diffusive heat fluxes in the basin. Vertical diffusive heat fluxes are estimated in different ways: using the newly available CTD-mounted microscale temperature measurements, a finescale strain parameterization, and a vertical kinetic energy parameterization from data along the P06 transect along 32.5°S. The unsteady-state abyssal heat budget for the basin shows closure within error estimates, demonstrating that (i) unsteady terms have become consequential for the heat balance in the isotherms closest to the ocean bottom and (ii) direct and indirect estimates from full-depth GO-SHIP hydrographic transects averaged over similarly large spatial and temporal scales can capture the basin-averaged abyssal mixing needed to close the deep overturning circulation.
Abstract
The abyssal southwest Pacific basin has warmed significantly between 1992 and 2017, consistent with warming along the bottom limb of the meridional overturning circulation seen throughout the global oceans. Here we present a framework for assessing the abyssal heat budget that includes the time-dependent unsteady effects of decadal warming and direct and indirect estimates of diapycnal mixing from microscale temperature measurements and finescale parameterizations. The unsteady terms estimated from the decadal warming rate are shown to be within a factor of 3 of the steady-state terms in the abyssal heat budget for the coldest portion of the water column and therefore cannot be ignored. We show that a reduction in the lateral heat flux for the coldest temperature classes compensated by an increase in warmer waters advected into the basin has important implications for the heat balance and diffusive heat fluxes in the basin. Vertical diffusive heat fluxes are estimated in different ways: using the newly available CTD-mounted microscale temperature measurements, a finescale strain parameterization, and a vertical kinetic energy parameterization from data along the P06 transect along 32.5°S. The unsteady-state abyssal heat budget for the basin shows closure within error estimates, demonstrating that (i) unsteady terms have become consequential for the heat balance in the isotherms closest to the ocean bottom and (ii) direct and indirect estimates from full-depth GO-SHIP hydrographic transects averaged over similarly large spatial and temporal scales can capture the basin-averaged abyssal mixing needed to close the deep overturning circulation.
Abstract
The energy and momentum balance of an abyssal overflow across a major sill in the Samoan Passage is estimated from two highly resolved towed sections, set 16 months apart, and results from a two-dimensional numerical simulation. Driven by the density anomaly across the sill, the flow is relatively steady. The system gains energy from divergence of horizontal pressure work
Abstract
The energy and momentum balance of an abyssal overflow across a major sill in the Samoan Passage is estimated from two highly resolved towed sections, set 16 months apart, and results from a two-dimensional numerical simulation. Driven by the density anomaly across the sill, the flow is relatively steady. The system gains energy from divergence of horizontal pressure work