Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: H. Huntrieser x
  • Refine by Access: All Content x
Clear All Modify Search
H. H. Schiesser
,
R. A. Houze Jr.
, and
H. Huntrieser

Abstract

The structures of severe mesoscale precipitation systems (MPS) in Switzerland have been classified by analyzing radar images obtained over a 5-yr period. Severe MPSs were defined to be those producing most of the damage on days on which at least 5 (out of 2400) communities reported water and/or at least 20 reported hail damage. Of 94 MPSs selected, 82 had radar reflectivity of 47 dBZ or greater and were referred to as mesoscale convective systems (MCS). The 12 remaining MPSs consisted of less intense, long-lasting, and widespread frontal or orographic rainfall.

Subclasses of MCSs were defined according to their internal arrangements of cell complexes (CC). A CC was defined as an echo contour of 40 dBZ surrounding echo maxima of at least 47 dBZ. Four general categories of organization were found: isolated CC, a group of CCs, and a broken or continuous line of CCs. All categories can be purely convective at the mature stage, or the CCs may be juxtaposed with a stratiform precipitation area, usually behind moving convection. The stratiform region often developed as a decaying convective area. These categories were examined in relation to sounding, surface mesonet, synoptic weather type, and severe weather information.

In 26 cases, the MCS had “leading line-trailing stratiform” structure. These MCSs were graded according to a classification scheme previously used to characterize spring rainstorms in Oklahoma. Only moderately and weakly classifiable storm systems occurred in Switzerland. The mountain barriers apparently interfered with the airflow such that MCSs were prevented from having enough time and space to develop to a higher degree of organization as is possible over the relatively flat terrain of Oklahoma. In addition, the instability and the wind shear in the Swiss storm environment was found to be weaker.

Full access
H. Huntrieser
,
H. H. Schiesser
,
W. Schmid
, and
A. Waldvogel

Abstract

The preconvective environment on thunderstorm days in Switzerland north of the Alps has been investigated during a 5-yr period (1985–89). Thermodynamic and kinematic parameters calculated from the radiosounding in Payerne (started at 0000 and 1200 UTC) were used to characterize the initiation of convection. The best parameters were evaluated by using three methods: 1) skill scores, 2) probability distributions, and 3) mean temperature soundings and hodographs. For the decision whether a thunderstorm day was expected or not, the best results were obtained at 0000 UTC with the original Showalter index and at 1200 UTC with the SWEAT index. In addition, to decide whether an isolated or widespread thunderstorm day was expected, the most successful parameter was the modified CAPECCL. Furthermore, the best thermodynamic and kinematic parameters were combined to create new thunderstorm indices, similar to the calculations of the SWEAT index in the United States. The new thunderstorm indices especially designed for northern Switzerland were jointly called the “SWISS index” (combined stability and wind shear index for thunderstorms in Switzerland). All of the traditional and new indices were verified with independent data from 3 yr (1990, 1992, and 1993), showing the best results for the new combined indices.

Full access
L. E. Ott
,
J. Bacmeister
,
S. Pawson
,
K. Pickering
,
G. Stenchikov
,
M. Suarez
,
H. Huntrieser
,
M. Loewenstein
,
J. Lopez
, and
I. Xueref-Remy

Abstract

Convection strongly influences the distribution of atmospheric trace gases. General circulation models (GCMs) use convective mass fluxes calculated by parameterizations to transport gases, but the results are difficult to compare with trace gas observations because of differences in scale. The high resolution of cloud-resolving models (CRMs) facilitates direct comparison with aircraft observations. Averaged over a sufficient area, CRM results yield a validated product directly comparable to output from a single global model grid column. This study presents comparisons of vertical profiles of convective mass flux and trace gas mixing ratios derived from CRM and single column model (SCM) simulations of storms observed during three field campaigns. In all three cases, SCM simulations underpredicted convective mass flux relative to CRM simulations. As a result, the SCM simulations produced lower trace gas mixing ratios in the upper troposphere in two of the three storms than did the CRM simulations.

The impact of parameter sensitivity in the moist physics schemes employed in the SCM has also been examined. Statistical techniques identified the most significant parameters influencing convective transport. Convective mass fluxes are shown to be strongly dependent on chosen parameter values. Results show that altered parameter settings can substantially improve the comparison between SCM and CRM convective mass flux. Upper tropospheric trace gas mixing ratios were also improved in two storms. In the remaining storm, the SCM representation of CO2 was not improved because of differences in entrainment and detrainment levels in the CRM and SCM simulations.

Full access
Mary C. Barth
,
Christopher A. Cantrell
,
William H. Brune
,
Steven A. Rutledge
,
James H. Crawford
,
Heidi Huntrieser
,
Lawrence D. Carey
,
Donald MacGorman
,
Morris Weisman
,
Kenneth E. Pickering
,
Eric Bruning
,
Bruce Anderson
,
Eric Apel
,
Michael Biggerstaff
,
Teresa Campos
,
Pedro Campuzano-Jost
,
Ronald Cohen
,
John Crounse
,
Douglas A. Day
,
Glenn Diskin
,
Frank Flocke
,
Alan Fried
,
Charity Garland
,
Brian Heikes
,
Shawn Honomichl
,
Rebecca Hornbrook
,
L. Gregory Huey
,
Jose L. Jimenez
,
Timothy Lang
,
Michael Lichtenstern
,
Tomas Mikoviny
,
Benjamin Nault
,
Daniel O’Sullivan
,
Laura L. Pan
,
Jeff Peischl
,
Ilana Pollack
,
Dirk Richter
,
Daniel Riemer
,
Thomas Ryerson
,
Hans Schlager
,
Jason St. Clair
,
James Walega
,
Petter Weibring
,
Andrew Weinheimer
,
Paul Wennberg
,
Armin Wisthaler
,
Paul J. Wooldridge
, and
Conrad Ziegler

Abstract

The Deep Convective Clouds and Chemistry (DC3) field experiment produced an exceptional dataset on thunderstorms, including their dynamical, physical, and electrical structures and their impact on the chemical composition of the troposphere. The field experiment gathered detailed information on the chemical composition of the inflow and outflow regions of midlatitude thunderstorms in northeast Colorado, west Texas to central Oklahoma, and northern Alabama. A unique aspect of the DC3 strategy was to locate and sample the convective outflow a day after active convection in order to measure the chemical transformations within the upper-tropospheric convective plume. These data are being analyzed to investigate transport and dynamics of the storms, scavenging of soluble trace gases and aerosols, production of nitrogen oxides by lightning, relationships between lightning flash rates and storm parameters, chemistry in the upper troposphere that is affected by the convection, and related source characterization of the three sampling regions. DC3 also documented biomass-burning plumes and the interactions of these plumes with deep convection.

Full access