Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: H. Teng x
  • All content x
Clear All Modify Search
J. Teng, F. H. S. Chiew, J. Vaze, S. Marvanek, and D. G. C. Kirono

Abstract

This paper presents the climate change impact on mean annual runoff across continental Australia estimated using the Budyko and Fu equations informed by projections from 15 global climate models and compares the estimates with those from extensive hydrological modeling. The results show runoff decline in southeast and far southwest Australia, but elsewhere across the continent there is no clear agreement between the global climate models in the direction of future precipitation and runoff change. Averaged across large regions, the estimates from the Budyko and Fu equations are reasonably similar to those from the hydrological models. The simplicity of the Budyko equation, the similarity in the results, and the large uncertainty in global climate model projections of future precipitation suggest that the Budyko equation is suitable for estimating climate change impact on mean annual runoff across large regions. The Budyko equation is particularly useful for data-limited regions, for studies where only estimates of climate change impact on long-term water availability are needed, and for investigative assessments prior to a detailed hydrological modeling study. The Budyko and Fu equations are, however, limited to estimating the change in mean annual runoff for a given change in mean annual precipitation and potential evaporation. The hydrological models, on the other hand, can also take into account potential changes in the subannual and other climate characteristics as well as provide a continuous simulation of daily and monthly runoff, which is important for many water availability studies.

Full access
Jin Teng, Jai Vaze, Francis H. S. Chiew, Biao Wang, and Jean-Michel Perraud

Abstract

This paper assesses the relative uncertainties from GCMs and from hydrological models in modeling climate change impact on runoff across southeast Australia. Five lumped conceptual daily rainfall–runoff models are used to model runoff using historical daily climate series and using future climate series obtained by empirically scaling the historical climate series informed by simulations from 15 GCMs. The majority of the GCMs project a drier future for this region, particularly in the southern parts, and this is amplified as a bigger reduction in the runoff. The results indicate that the uncertainty sourced from the GCMs is much larger than the uncertainty in the rainfall–runoff models. The variability in the climate change impact on runoff results for one rainfall–runoff model informed by 15 GCMs (an about 28%–35% difference between the minimum and maximum results for mean annual, mean seasonal, and high runoff) is considerably larger than the variability in the results between the five rainfall–runoff models informed by 1 GCM (a less than 7% difference between the minimum and maximum results). The difference between the rainfall–runoff modeling results is larger in the drier regions for scenarios of big declines in future rainfall and in the low-flow characteristics. The rainfall–runoff modeling here considers only the runoff sensitivity to changes in the input climate data (primarily daily rainfall), and the difference between the hydrological modeling results is likely to be greater if potential changes in the climate–runoff relationship in a warmer and higher CO2 environment are modeled.

Full access
J. Vaze, D. A. Post, F. H. S. Chiew, J.-M. Perraud, J. Teng, and N. R. Viney

Abstract

Different methods have been used to obtain the daily rainfall time series required to drive conceptual rainfall–runoff models, depending on data availability, time constraints, and modeling objectives. This paper investigates the implications of different rainfall inputs on the calibration and simulation of 4 rainfall–runoff models using data from 240 catchments across southeast Australia. The first modeling experiment compares results from using a single lumped daily rainfall series for each catchment obtained from three methods: single rainfall station, Thiessen average, and average of interpolated rainfall surface. The results indicate considerable improvements in the modeled daily runoff and mean annual runoff in the model calibration and model simulation over an independent test period with better spatial representation of rainfall. The second experiment compares modeling using a single lumped daily rainfall series and modeling in all grid cells within a catchment using different rainfall inputs for each grid cell. The results show only marginal improvement in the “distributed” application compared to the single rainfall series, and only in two of the four models for the larger catchments. Where a single lumped catchment-average daily rainfall series is used, care should be taken to obtain a rainfall series that best represents the spatial rainfall distribution across the catchment. However, there is little advantage in driving a conceptual rainfall–runoff model with different rainfall inputs from different parts of the catchment compared to using a single lumped rainfall series, where only estimates of runoff at the catchment outlet is required.

Full access
Cuan Petheram, Paul Rustomji, Tim R. McVicar, WenJu Cai, Francis H. S. Chiew, Jamie Vleeshouwer, Thomas G. Van Niel, LingTao Li, Richard G. Cresswell, Randall J. Donohue, Jin Teng, and Jean-Michel Perraud

Abstract

The majority of the world’s population growth to 2050 is projected to occur in the tropics. Hence, there is a serious need for robust methods for undertaking water resource assessments to underpin the sustainable management of water in tropical regions. This paper describes the largest and most comprehensive assessment of the future impacts of runoff undertaken in a tropical region using conceptual rainfall–runoff models (RRMs). Five conceptual RRMs were calibrated using data from 115 streamflow gauging stations, and model parameters were regionalized using a combination of spatial proximity and catchment similarity. Future rainfall and evapotranspiration projections (denoted here as GCMES) were transformed to catchment-scale variables by empirically scaling (ES) the historical climate series, informed by 15 global climate models (GCMs), to reflect a 1°C increase in global average surface air temperature. Using the best-performing RRM ensemble, approximately half the GCMES used resulted in a spatially averaged increase in mean annual runoff (by up to 29%) and half resulted in a decrease (by up to 26%). However, ~70% of the GCMES resulted in a difference of within ±5% of the historical rainfall (1930–2007). The range in modeled impact on runoff, as estimated by five RRMs (for individual GCMES), was compared to the range in modeled runoff using 15 GCMES (for individual RRMs). For mid- to high runoff metrics, better predictions will come from improved GCMES projections. A new finding of this study is that in the wet–dry tropics, for extremely large runoff events and low flows, improvements are needed in both GCMES and rainfall–runoff modeling.

Full access
R. Knutti, M. R. Allen, P. Friedlingstein, J. M. Gregory, G. C. Hegerl, G. A. Meehl, M. Meinshausen, J. M. Murphy, G.-K. Plattner, S. C. B. Raper, T. F. Stocker, P. A. Stott, H. Teng, and T. M. L. Wigley

Abstract

Quantification of the uncertainties in future climate projections is crucial for the implementation of climate policies. Here a review of projections of global temperature change over the twenty-first century is provided for the six illustrative emission scenarios from the Special Report on Emissions Scenarios (SRES) that assume no policy intervention, based on the latest generation of coupled general circulation models, climate models of intermediate complexity, and simple models, and uncertainty ranges and probabilistic projections from various published methods and models are assessed. Despite substantial improvements in climate models, projections for given scenarios on average have not changed much in recent years. Recent progress has, however, increased the confidence in uncertainty estimates and now allows a better separation of the uncertainties introduced by scenarios, physical feedbacks, carbon cycle, and structural uncertainty. Projection uncertainties are now constrained by observations and therefore consistent with past observed trends and patterns. Future trends in global temperature resulting from anthropogenic forcing over the next few decades are found to be comparably well constrained. Uncertainties for projections on the century time scale, when accounting for structural and feedback uncertainties, are larger than captured in single models or methods. This is due to differences in the models, the sources of uncertainty taken into account, the type of observational constraints used, and the statistical assumptions made. It is shown that as an approximation, the relative uncertainty range for projected warming in 2100 is the same for all scenarios. Inclusion of uncertainties in carbon cycle–climate feedbacks extends the upper bound of the uncertainty range by more than the lower bound.

Full access
S. G. Yeager, G. Danabasoglu, N. A. Rosenbloom, W. Strand, S. C. Bates, G. A. Meehl, A. R. Karspeck, K. Lindsay, M. C. Long, H. Teng, and N. S. Lovenduski

Abstract

The objective of near-term climate prediction is to improve our fore-knowledge, from years to a decade or more in advance, of impactful climate changes that can in general be attributed to a combination of internal and externally forced variability. Predictions initialized using observations of past climate states are tested by comparing their ability to reproduce past climate evolution with that of uninitialized simulations in which the same radiative forcings are applied. A new set of decadal prediction (DP) simulations has recently been completed using the Community Earth System Model (CESM) and is now available to the community. This new large-ensemble (LE) set (CESM-DPLE) is composed of historical simulations that are integrated forward for 10 years following initialization on 1 November of each year between 1954 and 2015. CESM-DPLE represents the “initialized” counterpart to the widely studied CESM Large Ensemble (CESM-LE); both simulation sets have 40-member ensembles, and they use identical model code and radiative forcings. Comparing CESM-DPLE to CESM-LE highlights the impacts of initialization on prediction skill and indicates that robust assessment and interpretation of DP skill may require much larger ensembles than current protocols recommend. CESM-DPLE exhibits significant and potentially useful prediction skill for a wide range of fields, regions, and time scales, and it shows widespread improvement over simpler benchmark forecasts as well as over a previous initialized system that was submitted to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The new DP system offers new capabilities that will be of interest to a broad community pursuing Earth system prediction research.

Open access
Philip A. Feiner, William H. Brune, David O. Miller, Li Zhang, Ronald C. Cohen, Paul S. Romer, Allen H. Goldstein, Frank N. Keutsch, Kate M. Skog, Paul O. Wennberg, Tran B. Nguyen, Alex P. Teng, Joost DeGouw, Abigail Koss, Robert J. Wild, Steven S. Brown, Alex Guenther, Eric Edgerton, Karsten Baumann, and Juliane L. Fry

Abstract

The chemical species emitted by forests create complex atmospheric oxidation chemistry and influence global atmospheric oxidation capacity and climate. The Southern Oxidant and Aerosol Study (SOAS) provided an opportunity to test the oxidation chemistry in a forest where isoprene is the dominant biogenic volatile organic compound. Hydroxyl (OH) and hydroperoxyl (HO2) radicals were two of the hundreds of atmospheric chemical species measured, as was OH reactivity (the inverse of the OH lifetime). OH was measured by laser-induced fluorescence (LIF) and by taking the difference in signals without and with an OH scavenger that was added just outside the instrument’s pinhole inlet. To test whether the chemistry at SOAS can be simulated by current model mechanisms, OH and HO2 were evaluated with a box model using two chemical mechanisms: Master Chemical Mechanism, version 3.2 (MCMv3.2), augmented with explicit isoprene chemistry and MCMv3.3.1. Measured and modeled OH peak at about 106 cm−3 and agree well within combined uncertainties. Measured and modeled HO2 peak at about 27 pptv and also agree well within combined uncertainties. Median OH reactivity cycled between about 11 s−1 at dawn and about 26 s−1 during midafternoon. A good test of the oxidation chemistry is the balance between OH production and loss rates using measurements; this balance was observed to within uncertainties. These SOAS results provide strong evidence that the current isoprene mechanisms are consistent with measured OH and HO2 and, thus, capture significant aspects of the atmospheric oxidation chemistry in this isoprene-rich forest.

Full access