Search Results

You are looking at 1 - 10 of 15 items for

  • Author or Editor: H.H. Jonsson x
  • Refine by Access: All Content x
Clear All Modify Search
H. H. Jonsson
and
B. Vonnegut

Abstract

Apparatus has been designed and constructed for real-time measurements of the electrical conductivity of rainwater. It utilizes a spinning disk that centrifuges and collects the rainwater failing on it A micro conductivity cell is employed, which consists only of electrodes, and needs no embodiment to sustain the rain sample during measurement. Instead the liquid is retained between the electrodes by its own surface tension. Only the order of a microliter of rain water is needed to obtain a inclement. The system's response time is about a second. Test runs during thunderstorms and frontal rains reveal that variations in conductivity by up to a factor of 5 occur during a storm event. Maximum conductivities of up to 160 μS cm−1 usually occurred at the beginning of the storms. In one thunderstorm rainwater conductivity as low as 5 μS cm−1 was measured for a duration of a few minutes.

Full access
H. H. Jonsson
and
B. Vonnegut

Abstract

Experiments are described on the behavior of a wind vane that is constructed in such a way that it is forced to oscillate about the wind direction. The forcing is accomplished by allowing the upwind edge of the vane's fin to jibe back and forth between two detents. The frequency of the oscillation is found to be directly proportional to the wind speed. For a given wind speed, the frequency varies with the square root of the fin area and the inverse square root of the anemometer's moment of inertia. The response time of the device is proportional to the inverse of the frequency.

Full access
H. Gerber
,
Szymon P. Malinowski
, and
Haflidi Jonsson

Abstract

Buoyancy reversal by evaporative cooling in entrainment holes has a minimal influence on stratocumulus (Sc) observed during the Physics of Stratocumulus Top (POST) aircraft field study held off the California coast in 2008. High-resolution temperature and microphysics measurements show only small differences for Sc with and without buoyancy reversal predicted by mixing fraction analysis that relates mixtures of cloudy air and free-atmospheric air to buoyancies of the mixtures. The reduction of LWC due to evaporation in the holes is a small percentage (average ~12%) of liquid water diluted in the Sc by entrainment from the entrainment interface layer (EIL) located above unbroken cloud top where most mixing, evaporation, and reduction of the large buoyancy jump between the cloud and free atmosphere occur. Entrainment is dominated by radiative cooling at cloud top.

Full access
T. Karl
,
P. K. Misztal
,
H. H. Jonsson
,
S. Shertz
,
A. H. Goldstein
, and
A. B. Guenther

Abstract

Airborne flux measurements of isoprene were performed over the Californian oak belts surrounding the Central Valley. The authors demonstrate for the first time 1) the feasibility of airborne eddy covariance measurements of reactive biogenic volatile organic compounds; 2) the effect of chemistry on the vertical transport of reactive species, such as isoprene; and 3) the applicability of wavelet analysis to estimate regional fluxes of biogenic volatile organic compounds. These flux measurements demonstrate that instrumentation operating at slower response times (e.g., 1–5 s) can still be used to determine eddy covariance fluxes in the mixed layer above land, where typical length scales of 0.5–3 km were observed. Flux divergence of isoprene measured in the planetary boundary layer (PBL) is indicative of OH densities in the range of 4–7 × 106 molecules per cubic centimeter and allows extrapolation of airborne fluxes to the surface with Damköhler numbers (ratio between the mixing time scale and the chemical time scale) in the range of 0.3–0.9. Most of the isoprene is oxidized in the PBL with entrainment fluxes of about 10% compared to the corresponding surface fluxes. Entrainment velocities of 1–10 cm s−1 were measured. The authors present implications for parameterizing PBL schemes of reactive species in regional and global models.

Full access
Q. Wang
,
J. A. Kalogiros
,
S. R. Ramp
,
J. D. Paduan
,
G. Buzorius
, and
H. Jonsson

Abstract

Aircraft measurements obtained during the 2003–04 Autonomous Ocean Sampling Network (AOSN-II) project were used to study the effect of small-scale variations of near-surface wind stress on coastal upwelling in the area of Monterey Bay. Using 5-km-long measurement segments at 35 m above the sea surface, wind stress and its curl were calculated with estimated accuracy of 0.02–0.03 N m−2 and 0.1–0.2 N m−2 per 100 kilometers, respectively. The spatial distribution of wind speed, wind stress, stress curl, and sea surface temperature were analyzed for four general wind conditions: northerly or southerly wind along the coastline, onshore flow, and offshore flow. Wind stress and speed maxima frequently were found to be noncollocated as bulk parameterizations imply owing to significant stability and nonhomogeneity effects at cold SST pools. The analyses revealed that complicated processes with different time scales (wind stress field variation, ocean response and upwelling, sea surface currents, and heating by solar radiation) affect the coastal sea surface temperature. It was found that the stress-curl-induced coastal upwelling only dominates in events during which positive curl extended systematically over a significant area (scales larger than 20 km). These events included cases with a northerly wind, which resulted in an expansion fan downstream from Point Año Nuevo (wind speed peaks greater than about 8–10 m s−1), and cases with an offshore/onshore flow, which are characterized by weak background upwelling due to Ekman transport. However, in general, observations show that cold pools of sea surface temperature in the central area of Monterey Bay were advected by ocean surface currents from strong upwelling regions. Aircraft vertical soundings taken in the bay area showed that dominant effects of the lee wave sheltering of coastal mountains resulted in weak atmospheric turbulence and affected the development of the atmospheric boundary layer. This effect causes low wind stress that limits upwelling, especially at the northern part of Monterey Bay. The sea surface temperature is generally warm in this part of the bay because of the shallow oceanic surface layer and solar heating of the upper ocean.

Full access
Miao-Ling Lu
,
Jian Wang
,
Richard C. Flagan
,
John H. Seinfeld
,
Andrew Freedman
,
Robert A. McClatchey
, and
Haflidi H. Jonsson

Abstract

Regions of enhanced humidity in the vicinity of cumulus clouds, so-called cloud halos, reflect features of cloud evolution, exert radiative effects, and may serve as a locus for new particle formation. Reported here are the results of an aircraft sampling campaign carried out near Oahu, Hawaii, from 31 July through 10 August 2001, aimed at characterizing the properties of trade wind cumulus cloud halos. An Aerodyne Research, Inc., fast spectroscopic water vapor sensor, flown for the first time in this campaign, allowed characterization of humidity properties at 10-m spatial resolution. Statistical properties of 60 traverses through cloud halos over the campaign were in general agreement with measurements reported by Perry and Hobbs. One particularly long-lived cloud is analyzed in detail, through both airborne measurement and numerical simulation, to track evolution of the cloud halos over the cloud's lifetime. Results of both observation and the simulation show that cloud halos tend to be broad at lower levels and narrow at upper levels, and broader on the downshear side than on the upshear side, broadening with time particularly in the downshear direction. The high correlation of clear-air turbulence distribution with the halo distribution temporally and spatially suggests that the halo forms, in part, due to turbulent mixing at the cloud boundary. Radiative calculations carried out on the simulated cloud and halo field indicate that the halo radiative effect is largest near cloud top during mature and dissipation stages. The halo-enhanced atmospheric shortwave absorption, averaged over this period, is about 1.3% of total solar absorption in the column.

Full access
Tarah M. Sharon
,
Bruce A. Albrecht
,
Haflidi H. Jonsson
,
Patrick Minnis
,
Mandana M. Khaiyer
,
Timothy M. van Reken
,
John Seinfeld
, and
Rick Flagan

Abstract

A cloud rift is characterized as a large-scale, persistent area of broken, low-reflectivity stratocumulus clouds usually surrounded by a solid deck of stratocumulus. A rift observed off the coast of California was investigated using an instrumented aircraft to compare the aerosol, cloud microphysical, and thermodynamic properties in the rift with those of the surrounding solid stratocumulus deck. The microphysical characteristics in the solid stratocumulus deck differ substantially from those of a broken, cellular rift where cloud droplet concentrations are a factor of 2 lower than those in the solid cloud. Furthermore, cloud condensation nuclei (CCN) concentrations were found to be about 3 times greater in the solid-cloud area compared with those in the rift. Although drizzle was observed near cloud top in parts of the solid stratocumulus cloud, the largest drizzle rates were associated with the broken clouds within the rift area and with extremely large effective droplet sizes retrieved from satellite data. Minimal thermodynamic differences between the rift and solid cloud deck were observed. In addition to marked differences in particle concentrations, evidence of a mesoscale circulation near the solid cloud–rift boundary is presented. This mesoscale circulation may provide a mechanism for maintaining a rift, but further study is required to understand the initiation of a rift and the conditions that may cause it to fill. A review of results from previous studies indicates similar microphysical characteristics in rift features sampled serendipitously. These observations indicate that cloud rifts are depleted of aerosols through the cleansing associated with drizzle and are a manifestation of natural processes occurring in marine stratocumulus.

Full access
H.H. Jonsson
,
J.C. Wilson
,
C.A. Brock
,
R.G. Knollenberg
,
T.R. Newton
,
J.E. Dye
,
D. Baumgardner
,
S. Borrmann
,
G.V. Ferry
,
R. Pueschel
,
Dave C. Woods
, and
Mike C. Pitts

Abstract

A focused cavity aerosol spectrometer aboard a NASA ER-2 high-altitude aircraft provided high-resolution measurements of the size of the stratospheric particles in the 0.06–2.0-µm-diameter range in flights following the eruption of Mount Pinatubo in 1991. Effects of anisokinetic sampling and evaporation in the sampling system were accounted for by means adapted and specifically developed for this instrument. Calibrations with monodisperse aerosol particles provided the instrument's response matrix, which upon inversion during data reduction yielded the particle size distributions. The resultant dataset is internally consistent and generally shows agreement to within a factor of 2 with comparable measurements simultaneously obtained by a condensation nuclei counter, a forward-scattering spectrometer probe, and aerosol particle impactors, as well as with nearby extinction profiles obtained by satellite measurements and with lidar measurements of backscatter.

Full access
Ewan Crosbie
,
Zhen Wang
,
Armin Sorooshian
,
Patrick Y. Chuang
,
Jill S. Craven
,
Matthew M. Coggon
,
Michael Brunke
,
Xubin Zeng
,
Haflidi Jonsson
,
Roy K. Woods
,
Richard C. Flagan
, and
John H. Seinfeld

Abstract

Data from three research flights, conducted over water near the California coast, are used to investigate the boundary between stratocumulus cloud decks and clearings of different sizes. Large clearings exhibit a diurnal cycle with growth during the day and contraction overnight and a multiday life cycle that can include oscillations between growth and decay, whereas a small coastal clearing was observed to be locally confined with a subdiurnal lifetime. Subcloud aerosol characteristics are similar on both sides of the clear–cloudy boundary in the three cases, while meteorological properties exhibit subtle, yet important, gradients, implying that dynamics, and not microphysics, is the primary driver for the clearing characteristics. Transects, made at multiple levels across the cloud boundary during one flight, highlight the importance of microscale (~1 km) structure in thermodynamic properties near the cloud edge, suggesting that dynamic forcing at length scales comparable to the convective eddy scale may be influential to the larger-scale characteristics of the clearing. These results have implications for modeling and observational studies of marine boundary layer clouds, especially in relation to aerosol–cloud interactions and scales of variability responsible for the evolution of stratocumulus clearings.

Full access
T. J. Ansell
,
P. D. Jones
,
R. J. Allan
,
D. Lister
,
D. E. Parker
,
M. Brunet
,
A. Moberg
,
J. Jacobeit
,
P. Brohan
,
N. A. Rayner
,
E. Aguilar
,
H. Alexandersson
,
M. Barriendos
,
T. Brandsma
,
N. J. Cox
,
P. M. Della-Marta
,
A. Drebs
,
D. Founda
,
F. Gerstengarbe
,
K. Hickey
,
T. Jónsson
,
J. Luterbacher
,
Ø. Nordli
,
H. Oesterle
,
M. Petrakis
,
A. Philipp
,
M. J. Rodwell
,
O. Saladie
,
J. Sigro
,
V. Slonosky
,
L. Srnec
,
V. Swail
,
A. M. García-Suárez
,
H. Tuomenvirta
,
X. Wang
,
H. Wanner
,
P. Werner
,
D. Wheeler
, and
E. Xoplaki

Abstract

The development of a daily historical European–North Atlantic mean sea level pressure dataset (EMSLP) for 1850–2003 on a 5° latitude by longitude grid is described. This product was produced using 86 continental and island stations distributed over the region 25°–70°N, 70°W–50°E blended with marine data from the International Comprehensive Ocean–Atmosphere Data Set (ICOADS). The EMSLP fields for 1850–80 are based purely on the land station data and ship observations. From 1881, the blended land and marine fields are combined with already available daily Northern Hemisphere fields. Complete coverage is obtained by employing reduced space optimal interpolation. Squared correlations (r2) indicate that EMSLP generally captures 80%–90% of daily variability represented in an existing historical mean sea level pressure product and over 90% in modern 40-yr European Centre for Medium-Range Weather Forecasts Re-Analyses (ERA-40) over most of the region. A lack of sufficient observations over Greenland and the Middle East, however, has resulted in poorer reconstructions there. Error estimates, produced as part of the reconstruction technique, flag these as regions of low confidence. It is shown that the EMSLP daily fields and associated error estimates provide a unique opportunity to examine the circulation patterns associated with extreme events across the European–North Atlantic region, such as the 2003 heat wave, in the context of historical events.

Full access