Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Hai Wang x
  • All content x
Clear All Modify Search
Hai Wang, Shang-Ping Xie, and Qinyu Liu

Abstract

Spatial patterns of climate response to changes in anthropogenic aerosols and well-mixed greenhouse gases (GHGs) are investigated using climate model simulations for the twentieth century. The climate response shows both similarities and differences in spatial pattern between aerosol and GHG runs. Common climate response between aerosol and GHG runs tends to be symmetric about the equator. This work focuses on the distinctive patterns that are unique to the anthropogenic aerosol forcing. The tropospheric cooling induced by anthropogenic aerosols is locally enhanced in the midlatitude Northern Hemisphere with a deep vertical structure around 40°N, anchoring a westerly acceleration in thermal wind balance. The aerosol-induced negative radiative forcing in the Northern Hemisphere requires a cross-equatorial Hadley circulation to compensate interhemispheric energy imbalance in the atmosphere. Associated with a southward shift of the intertropical convergence zone, this interhemispheric asymmetric mode is unique to aerosol forcing and absent in GHG runs. Comparison of key climate response pattern indices indicates that the aerosol forcing dominates the interhemispheric asymmetric climate response in historical all-forcing simulations, as well as regional precipitation change such as the drying trend over the East Asian monsoon region. While GHG forcing dominates global mean surface temperature change, its effect is on par with and often opposes the aerosol effect on precipitation, making it difficult to detect anthropogenic change in rainfall from historical observations.

Full access
XiaoJing Jia, Hai Lin, June-Yi Lee, and Bin Wang

Abstract

Multimodel ensemble (MME) seasonal forecasts are analyzed to evaluate numerical model performance in predicting the leading forced atmospheric circulation pattern over the extratropical Northern Hemisphere (NH). Results show that the time evolution of the leading tropical Pacific sea surface temperature (SST)-coupled atmospheric pattern (MCA1), which is obtained by applying a maximum covariance analysis (MCA) between 500-hPa geopotential height (Z 500) in the extratropical NH and SST in the tropical Pacific Ocean, can be predicted with a significant skill in March–May (MAM), June–August (JJA), and December–February (DJF) one month ahead. However, most models perform poorly in capturing the time variation of MCA1 in September–November (SON) with 1 August initial condition. Two possible reasons for the models’ low skill in SON are identified. First, the models have the most pronounced errors in the mean state of SST and precipitation along the central equatorial Pacific. Because of the link between the divergent circulation forced by tropical heating and the midlatitude atmospheric circulation, errors in the mean state of tropical SST and precipitation may lead to a degradation of midlatitude forecast skill. Second, examination of the potential predictability of the atmosphere, estimated by the ratio of the total variance to the variance of the model forecasts due to internal dynamics, shows that the atmospheric potential predictability over the North Pacific–North American (NPNA) region is the lowest in SON compared to the other three seasons. The low ratio in SON is due to a low variance associated with external forcing and a high variance related to atmospheric internal processes over this area.

Full access
Zhen-Qiang Zhou, Shang-Ping Xie, Xiao-Tong Zheng, Qinyu Liu, and Hai Wang

Abstract

El Niño–Southern Oscillation (ENSO) induces climate anomalies around the globe. Atmospheric general circulation model simulations are used to investigate how ENSO-induced teleconnection patterns during boreal winter might change in response to global warming in the Pacific–North American sector. As models disagree on changes in the amplitude and spatial pattern of ENSO in response to global warming, for simplicity the same sea surface temperature (SST) pattern of ENSO is prescribed before and after the climate warming. In a warmer climate, precipitation anomalies intensify and move eastward over the equatorial Pacific during El Niño because the enhanced mean SST warming reduces the barrier to deep convection in the eastern basin. Associated with the eastward shift of tropical convective anomalies, the ENSO-forced Pacific–North American (PNA) teleconnection pattern moves eastward and intensifies under the climate warming. By contrast, the PNA mode of atmospheric internal variability remains largely unchanged in pattern, suggesting the importance of tropical convection in shifting atmospheric teleconnections. As the ENSO-induced PNA pattern shifts eastward, rainfall anomalies are expected to intensify on the west coast of North America, and the El Niño–induced surface warming to expand eastward and occupy all of northern North America. The spatial pattern of the mean SST warming affects changes in ENSO teleconnections. The teleconnection changes are larger with patterned mean warming than in an idealized case where the spatially uniform warming is prescribed in the mean state. The results herein suggest that the eastward-shifted PNA pattern is a robust change to be expected in the future, independent of the uncertainty in changes of ENSO itself.

Full access
Ngar-Cheung Lau, Ants Leetmaa, Mary Jo Nath, and Hai-Lan Wang

Abstract

The causes for the observed occurrence of anomalous zonally symmetric upper-level pressure ridges in the midlatitude belts of both hemispheres during the year after warm El Niño–Southern Oscillation (ENSO) events have been investigated. Sea surface temperature (SST) anomalies in the Indo–western Pacific (IWP) sector were simulated by allowing an oceanic mixed layer model for that region to interact with local atmospheric changes forced remotely by observed ENSO episodes in the eastern/central tropical Pacific. The spatiotemporal evolution of these SST conditions through a composite ENSO cycle was then inserted as lower boundary conditions within the IWP domain in an ensemble of atmospheric general circulation model (GCM) integrations. This experimental setup is seen to reproduce zonally symmetric geopotential height anomalies with maximum amplitudes being attained over the extratropics in the boreal summer after the peak phase of ENSO. The model evidence hence supports the notion that these global-scale atmospheric changes are primarily responses to SST perturbations in IWP, which are in turn linked to ENSO variability in the equatorial Pacific by the “atmospheric bridge” mechanism.

Experimentation with a stationary wave model indicates that the Eastern Hemisphere portion of the aforementioned atmospheric signals are attributable to forcing by tropical heat sources and sinks associated with precipitation anomalies in the IWP region, which are closely related to the underlying SST changes. Diagnosis of the output from the GCM integrations reveals that these circulation changes due to diabatic heating are accompanied by alterations of the propagation path and intensity of the high-frequency eddies at locations farther downstream. The geopotential tendencies associated with the latter disturbances bear some resemblance to the anomalous height pattern in the Western Hemisphere. Such local eddy–mean flow feedbacks hence contribute to the zonal symmetry of the atmospheric response pattern to forcing in the IWP region. Analysis of zonally averaged circulation statistics indicates that the mean meridional circulation induced by divergence of anomalous transient eddy momentum fluxes in ENSO events could also generate zonally symmetric perturbations in midlatitudes.

The model-simulated precipitation and surface temperature anomalies in the North American sector in response to SST changes in IWP suggest an increased frequency of droughts and heat waves in that region during the summer season after warm ENSO events.

Full access
Hai Wang, Shang-Ping Xie, Yu Kosaka, Qinyu Liu, and Yan Du

Abstract

Anthropogenic aerosols partially mask the greenhouse warming and cause the reduction in Asian summer monsoon precipitation and circulation. By decomposing the atmospheric change into the direct atmospheric response to radiative forcing and sea surface temperature (SST)-mediated change, the physical mechanisms for anthropogenic-aerosol-induced changes in the East Asian summer monsoon (EASM) and South Asian summer monsoon (SASM) are diagnosed. Using coupled and atmospheric general circulation models, this study shows that the aerosol-induced troposphere cooling over Asian land regions generates anomalous sinking motion between 20° and 40°N and weakens the EASM north of 20°N without SST change. The decreased EASM precipitation and the attendant wind changes are largely due to this direct atmospheric response to radiative forcing, although the aerosol-induced North Pacific SST cooling also contributes. The SST-mediated change dominates the aerosol-induced SASM response, with contributions from both the north–south interhemispheric SST gradient and the local SST cooling pattern over the tropical Indian Ocean. Specifically, with large meridional gradient, the zonal-mean SST cooling pattern is most important for the Asian summer monsoon response to anthropogenic aerosol forcing, resulting in a reorganization of the regional meridional atmospheric overturning circulation. While uncertainty in aerosol radiative forcing has been emphasized in the literature, our results show that the intermodel spread is as large in the SST effect on summer monsoon rainfall, calling for more research into the ocean–atmosphere coupling.

Full access