Search Results

You are looking at 1 - 10 of 17 items for

  • Author or Editor: Haibo Liu x
  • Refine by Access: All Content x
Clear All Modify Search
Jacob Scheff
,
Richard Seager
,
Haibo Liu
, and
Sloan Coats

Abstract

Past cold climates are often thought to have been drier than today on land, which appears to conflict with certain recent studies projecting widespread terrestrial drying with near-future warming. However, other work has found that, over large portions of the continents, the conclusion of future drying versus wetting strongly depends on the physical property of interest. Here, it is shown that this also holds in simulations of the Last Glacial Maximum (LGM): the continents have generally wetter topsoils and higher values of common climate wetness metrics than in the preindustrial, as well as generally lower precipitation and ubiquitously lower photosynthesis (likely driven by the low CO2), with streamflow responses falling in between. Using a large existing global pollen and plant fossil compilation, it is also confirmed that LGM grasslands and open woodlands grew at many sites of present-day forest, seasonal forests at many sites of present-day rain forest, and so forth (116–144 sites out of 302), while changes in the opposite sense were very few (9–17 sites out of 302) and spatially confined. These vegetation changes resemble the model photosynthesis responses but not the hydroclimate responses, while published lake-level changes resemble the latter but not the former. Thus, confidence in both the model hydrologic and photosynthesis projections is increased, and there is no significant conflict. Instead, paleo- and modern climate researchers must carefully define “wetting” and “drying” and, in particular, should not assume hydrologic drying on the basis of vegetation decline alone or assume vegetation stress on the basis of declines in hydroclimatic indicators.

Full access
Hua Zhang
,
Haibo Wang
,
Yangang Liu
,
Xianwen Jing
, and
Yi Liu

Abstract

Cloud albedo is expected to influence cloud radiative forcing in addition to cloud fraction, and inadequate description of the cloud overlapping effects on the cloud fraction may influence the simulated cloud fraction, and thus the relative cloud radiative forcing (RCRF) and cloud albedo. In this study, we first present a new formula by extending that presented previously in Liu et al. (2011) to consider multilayer clouds directly in the relationship between cloud albedo, cloud fraction and RCRF, and then quantitatively evaluate the effects of different cloud vertical overlapping structures, represented by the decorrelation length scales (L cf), on the simulated cloud albedos. We use the BCC_AGCM2.0_CUACE/Aero model with simultaneous validation by observations from the Clouds and the Earth's Radiation Energy System (CERES) satellite. When L cf < 4 km (i.e., the cloud overlap is closer to the random overlap), the simulated cloud albedos are generally in good agreement with the satellite-based albedos for December–February and June–August; when L cf ≥ 4 km (i.e., the cloud vertical overlap is closer to the maximum overlap), the difference between simulated and observed cloud albedos became larger, due mainly to significant differences in cloud fractions and RCRF. Further quantitative analysis shows that the relative Euclidean distance, which represents the degree of overall model–observation disagreement, increases with the L cf for all three variables (cloud albedo, cloud fraction and RCRF), indicating the importance of cloud vertical overlapping in determining the accuracy of the calculated cloud albedo for multilayer clouds.

Restricted access
Mingfang Ting
,
Richard Seager
,
Cuihua Li
,
Haibo Liu
, and
Naomi Henderson

Abstract

The net surface water budget, precipitation minus evaporation (PE), shows a clear seasonal cycle in the U.S. Southwest with a net gain of surface water (positive PE) in the cold half of the year (October–March) and a net loss of water (negative PE) in the warm half (April–September), with June and July being the driest months of the year. There is a significant shift of the summer drying toward earlier in the year under a CO2 warming scenario, resulting in substantial spring drying (March–May) of the U.S. Southwest from the near-term future to the end of the current century, with gradually increasing magnitude. While the spring drying has been identified in previous studies, its mechanism has not been fully addressed. Using moisture budget analysis, it was found that the drying is mainly due to decreased mean moisture convergence, partially compensated by the increase in transient eddy moisture flux convergence. The decreased mean moisture convergence is further separated into components as a result of changes in circulation (dynamic changes) and changes in atmospheric moisture content (thermodynamic changes). The drying is found to be dominated by the thermodynamic-driven changes in column-averaged moisture convergence, mainly due to increased dry zonal advection caused by the climatological land–ocean thermal contrast, rather than by the well-known “dry get drier” mechanism. Furthermore, the enhanced dry advection in the warming climate is dominated by the robust zonal mean atmospheric warming, leading to equally robust spring drying in the southwestern United States.

Full access
Mingfang Ting
,
Richard Seager
,
Cuihua Li
,
Haibo Liu
, and
Naomi Henderson

Abstract

During the summer, the midwestern United States, which covers the main U.S. corn belt, has a net loss of surface water as evapotranspiration exceeds precipitation. The net moisture gain into the atmosphere is transported out of the region to the northern high latitudes through transient eddy moisture fluxes. How this process may change in the future is not entirely clear despite the fact that the corn-belt region is responsible for a large portion of the global supply of corn and soybeans. We find that increased CO2 and the associated warming increase evapotranspiration while precipitation reduces in the region, leading to further reduction in precipitation minus evaporation in the future. At the same time, the poleward transient moisture flux increases, leading to enhanced atmospheric moisture export from the corn-belt region. However, storm-track intensity is generally weakened in the summer because of a reduced north–south temperature gradient associated with amplified warming in the midlatitudes. The intensified transient eddy moisture transport as the storm track weakens can be reconciled by the stronger mean moisture gradient in the future. This is found to be caused by the climatological low-level jet transporting more moisture into the Great Plains region as a result of the thermodynamic mechanism under warmer conditions. Our results, for the first time, show that in the future the U.S. Midwest corn belt will experience more hydrological stress due to intensified transient eddy moisture export, leading to drier soils in the region.

Open access
Richard Seager
,
Naomi Henderson
,
Mark A. Cane
,
Haibo Liu
, and
Jennifer Nakamura

Abstract

The recent California drought was associated with a persistent ridge at the west coast of North America that has been associated with, in part, forcing from warm SST anomalies in the tropical west Pacific. Here it is considered whether there is a role for human-induced climate change in favoring such a west coast ridge. The models from phase 5 of the Coupled Model Intercomparison Project do not support such a case either in terms of a shift in the mean circulation or in variance that would favor increased intensity or frequency of ridges. The models also do not support shifts toward a drier mean climate or more frequent or intense dry winters or to tropical SST states that would favor west coast ridges. However, reanalyses do show that over the last century there has been a trend toward circulation anomalies over the Pacific–North American domain akin to those during the height of the California drought. The trend has been associated with a trend toward preferential warming of the Indo–west Pacific, an arrangement of tropical oceans and Pacific–North American circulation similar to that during winter 2013/14, the driest winter of the California drought. These height trends, however, are not reproduced in SST-forced atmosphere model ensembles. In contrast, idealized atmosphere modeling suggests that increased tropical Indo-Pacific zonal SST gradients are optimal for forcing height trends that favor a west coast ridge. These results allow a tenuous case for human-driven climate change driving increased gradients and favoring the west coast ridge, but observational data are not sufficiently accurate to confirm or reject this case.

Full access
Richard Seager
,
Haibo Liu
,
Naomi Henderson
,
Isla Simpson
,
Colin Kelley
,
Tiffany Shaw
,
Yochanan Kushnir
, and
Mingfang Ting

Abstract

The hydrological cycle in the Mediterranean region, as well as its change over the coming decades, is investigated using the Interim European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-Interim) and phase 5 of the Coupled Model Intercomparison Project (CMIP5) historical simulations and projections of the coming decades. The Mediterranean land regions have positive precipitation minus evaporation, PE, in winter and negative PE in summer. According to ERA-Interim, positive PE over land in winter is sustained by transient eddy moisture convergence and opposed by mean flow moisture divergence. Dry mean flow advection is important for opposing the transient eddy moisture flux convergence in the winter half year and the mass divergent mean flow is a prime cause of negative PE in the summer half year. These features are well reproduced in the CMIP5 ensemble. The models predict reduced PE over the Mediterranean region in the future year-round. For both land and sea, a common cause of drying is increased mean flow moisture divergence. Changes in transient eddy moisture fluxes largely act diffusively and cause drying over the sea and moistening over many land areas to the north in winter and drying over western land areas and moistening over the eastern sea in summer. Increased mean flow moisture divergence is caused by both the increase in atmospheric humidity in a region of mean flow divergence and strengthening of the mass divergence. Increased mass divergence is related to increased high pressure over the central Mediterranean in winter and over the Atlantic and northern Europe in summer, which favors subsidence and low-level divergence over the Mediterranean region.

Full access
Shizuo Liu
,
Qigang Wu
,
Lin Wang
,
Steven R. Schroeder
,
Yang Zhang
,
Yonghong Yao
, and
Haibo Hu

Abstract

Northern Hemisphere (NH) snow cover extent (SCE) has diminished in spring and early summer since the 1960s. Historical simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5) estimated about half as much NH SCE reduction as observed, and thus underestimated the associated climate responses. This study investigates atmospheric responses to realistic decreasing snow anomalies using multiple ensemble transient integrations of climate models forced by observed light and heavy NH snow cover years, specifically satellite-based observations of NH SCE and snow water equivalent from March to August in 1990 (light snow) and 1985 (heavy snow), as a proxy for the trend. The primary atmospheric responses to March–August NH snow reduction are decreased soil moisture, increased surface air temperature, general tropospheric warming in the extratropics and the Arctic, increased geopotential heights, and weakening of the midlatitude jet stream and eddy kinetic energy. The localized response is maintained by persistent increased diabatic heating due to reduced snow anomalies and resulting soil moisture drying, and the remote atmospheric response results partly from horizontal propagation of stationary Rossby wave energy and also from a transient eddy feedback mechanism. In summer, atmospheric responses are significant in both the Arctic and the tropics and are mostly induced by contemporaneous snow forcing, but also by the summer soil moisture dry anomaly associated with early snow melting.

Free access
Xi Liang
,
Xichen Li
,
Haibo Bi
,
Martin Losch
,
Yongqi Gao
,
Fu Zhao
,
Zhongxiang Tian
, and
Chengyan Liu

Abstract

The extreme Arctic sea ice minima in the twenty-first century have been attributed to multiple factors, such as anomalous atmospheric circulation, excess solar radiation absorbed by open ocean, and thinning sea ice in a warming world. Most likely it is the combination of these factors that drives the extreme sea ice minima, but how the factors rank in setting the conditions for these events has not been quantified. To address this question, the sea ice budget of an Arctic regional sea ice–ocean model forced by atmospheric reanalysis data is analyzed to assess the development of the observed sea ice minima. Results show that the ice area difference in the years 2012, 2019, and 2007 is driven to over 60% by the difference in summertime sea ice area loss due to air–ocean heat flux over open water. Other contributions are small. For the years 2012 and 2020 the situation is different and more complex. The air–ice heat flux causes more sea ice area loss in summer 2020 than in 2012 due to warmer air temperatures, but this difference in sea ice area loss is compensated by reduced advective sea ice loss out of the Arctic Ocean mainly caused by the relaxation of the Arctic dipole. The difference in open water area in early August leads to different air–ocean heat fluxes, which distinguishes the sea ice minima in 2012 and 2020. Further, sensitivity experiments indicate that both the atmospheric circulation associated with the Arctic dipole and extreme storms are essential conditions for a new low record of sea ice extent.

Full access
Richard Seager
,
Timothy J. Osborn
,
Yochanan Kushnir
,
Isla R. Simpson
,
Jennifer Nakamura
, and
Haibo Liu

Abstract

Mediterranean-type climates are defined by temperate, wet winters, and hot or warm dry summers and exist at the western edges of five continents in locations determined by the geography of winter storm tracks and summer subtropical anticyclones. The climatology, variability, and long-term changes in winter precipitation in Mediterranean-type climates, and the mechanisms for model-projected near-term future change, are analyzed. Despite commonalities in terms of location in the context of planetary-scale dynamics, the causes of variability are distinct across the regions. Internal atmospheric variability is the dominant source of winter precipitation variability in all Mediterranean-type climate regions, but only in the Mediterranean is this clearly related to annular mode variability. Ocean forcing of variability is a notable influence only for California and Chile. As a consequence, potential predictability of winter precipitation variability in the regions is low. In all regions, the trend in winter precipitation since 1901 is similar to that which arises as a response to changes in external forcing in the models participating in phase 5 of the Coupled Model Intercomparison Project. All Mediterranean-type climate regions, except in North America, have dried and the models project further drying over coming decades. In the Northern Hemisphere, dynamical processes are responsible: development of a winter ridge over the Mediterranean that suppresses precipitation and of a trough west of the North American west coast that shifts the Pacific storm track equatorward. In the Southern Hemisphere, mixed dynamic–thermodynamic changes are important that place a minimum in vertically integrated water vapor change at the coast and enhance zonal dry advection into Mediterranean-type climate regions inland.

Full access
Shizuo Liu
,
Qigang Wu
,
Xuejuan Ren
,
Yonghong Yao
,
Steven R. Schroeder
, and
Haibo Hu

Abstract

Observational studies link a persistent dipole of autumn and winter snow cover anomalies over the Tibetan Plateau (TP) and Mongolia with winter Pacific–North American (PNA)-like atmospheric variations. This study investigates atmospheric responses to such snow forcings using multiple ensemble transient integrations of the CAM4 and CLM4.0 models. Model boundary conditions are based on climatological sea ice extent and sea surface temperature, and satellite observations of snow cover extent (SCE) and snow water equivalent (SWE) over the TP and Mongolia from October to March in 1997/98 (heavy TP and light Mongolia snow) and 1984/85 (light TP and heavy Mongolia snow), with model-derived SCE and SWE elsewhere. In various forcing experiments, the ensemble-mean difference between simulations with these two extreme snow states identifies local, distant, concurrent, and delayed climatic responses. The main atmospheric responses to a dipole of high TP and low Mongolia SCE persisting from October to March (versus the opposite extreme) are strong TP surface cooling, warming in the surrounding China and Mongolia region, and a winter positive PNA-like response. The localized response is maintained by persistent diabatic cooling or heating, and the remote PNA response results mainly from the increased horizontal eastward propagation of stationary Rossby wave energy due to persistent TP snow forcing and also a winter transient eddy feedback mechanism. With a less persistent dipole anomaly in autumn or winter only, local responses are similar depending on the specific anomalies, but the winter PNA-like response is nearly absent or noticeably reduced.

Full access