Search Results

You are looking at 1 - 10 of 22 items for

  • Author or Editor: Haiyan Jiang x
  • All content x
Clear All Modify Search
Haiyan Jiang

Abstract

Convective intensity proxies measured by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), Precipitation Radar (PR), and Visible and Infrared Scanner (VIRS) are used to assess the relationship between intense convection in the inner core and tropical cyclone (TC) intensity change. Using the cumulative distribution functions of 24-h intensity changes from the 1998–2008 best-track data for global TCs, five intensity change categories are defined: rapidly intensifying (RI), slowly intensifying, neutral, slowly weakening, and rapidly weakening. TRMM observations of global TCs during 1998–2008 are used to generate the distributions of convective properties in the storm’s inner-core region for different storm intensity change categories. To examine the hypothesis of hot towers near the eye as an indicator of RI, hot towers are defined by precipitation features with 20-dBZ radar echo height reaching 14.5 km.

The differences in the convective parameters between rapidly intensifying TCs and slowly intensifying, neutral, slowly weakening, and rapidly weakening TCs are quantified using statistical analysis. It is found that statistically significant differences of three out of four convective intensity parameters in the inner core exist between RI and non-RI storms. Between RI and slowly intensifying TCs, a statistically significant difference exists for the minimum 11-μm IR brightness temperature T B11 in the inner core. This indicates that a relationship does exist between inner-core convective intensity and TC intensity change. The results in this study also suggest that the rate of intensification appears to be influenced by convective activity in the inner core and the ability to predict RI might be further improved by using convective parameters. With regard to different convective proxies, the relationships are different. The minimum T B11, upper-level maximum radar reflectivities, and maximum 20-dBZ radar echo height in the inner core are best associated with the rate of TC intensity change, while the minimum 85-GHz polarization corrected brightness temperature (PCT) shows some ambiguities in relation to intensity change. The minimum 37-GHz PCT shows no significant relationship with TC intensity change, probably because of the contamination of the ice scattering signal by emission from rain and liquid water in this channel.

By examining the probability of RI for each convective parameter for which statistically significant differences at the 95% level were found of RI and non-RI cases, it is found that all three parameters provide additional information relative to climatology. The most skillful parameter is minimum T B11, and the second is maximum 20-dBZ height, followed by minimum 85-GHz PCT. However, the increases of RI probability from the larger sample mean by using these predictors are not very large.

When using the existence of hot towers as a predictor, it is found that the probabilities of RI and slowly intensifying increase and those of slowly weakening and rapidly weakening decrease for samples with hot towers in the inner core. However, the increases for intensifying and decreases for weakening are not substantial, indicating that hot towers are neither a necessary nor a sufficient condition for RI.

Full access
Xinxi Wang and Haiyan Jiang

Abstract

Based on 35-yr (1982–2016) best track and Statistical Hurricane Intensity Prediction Scheme data, this study examined climatology of rapidly intensifying (RI) and slowly intensifying (SI) events as well as their time evolutions of storm-related and environmental parameters for tropical cyclones (TCs) in both North Atlantic (AL) and eastern North Pacific (EP) basins. Major hurricanes were intensified mainly through RI while tropical depression and tropical storms were intensified through SI. The percentage of TCs that underwent RI peaks in the late hurricane season whereas the percentage of TCs that underwent SI peaks early. For the first time in the literature, this study found that RI events have significantly different storm-related and environmental characteristics than SI events for before-, during-, and after-event stages. In both AL and EP basins, RI events always intensify significantly faster during the previous 12 h, are located farther south, and have warmer sea surface and 200-hPa temperatures, greater ocean heat content, larger 200-hPa divergence, weaker vertical wind shear, and weaker 200-hPa westerly flow than SI events for all event-relative stages. In the AL basin, RI events have larger low-level and midlevel relative humidity and larger 850-hPa relative vorticity than SI events for all event-relative stages in the AL and most event-relative stages in the EP. RI events are associated with more convectively unstable atmosphere and are farther away from their maximum potential intensities than SI events for most event-relative stages in the AL and for all event-relative stages in the EP.

Restricted access
Haiyan Jiang and Cheng Tao

Abstract

Based on the 12-yr (1998–2009) Tropical Rainfall Measuring Mission (TRMM) precipitation feature (PF) database, both radar and infrared (IR) observations from TRMM are used to quantify the contribution of tropical cyclones (TCs) to very deep convection (VDC) in the tropics and to compare TRMM-derived properties of VDC in TCs and non-TCs. Using a radar-based definition, it is found that the contribution of TCs to total VDC in the tropics is not much higher than the contribution of TCs to total PFs. However, the area-based contribution of TCs to overshooting convection defined by IR is 13.3%, which is much higher than the 3.2% contribution of TCs to total PFs. This helps explain the contradictory results between previous radar-based and IR-based studies and indicates that TCs only contribute disproportionately large amount of overshooting convection containing mainly small ice particles that are barely detected by the TRMM radar. VDC in non-TCs over land has the highest maximum 30- and 40-dBZ height and the strongest ice-scattering signature derived from microwave 85- and 37-GHz observations, while VDC in TCs has the coldest minimum IR brightness temperature and largest overshooting distance and area. This suggests that convection is much more intense in non-TCs over land but is much deeper or colder in TCs. It is found that VDC in TCs usually has smaller environmental shear but larger total precipitable water and convective available potential energy than those in non-TCs. These findings offer evidence that TCs may contribute disproportionately to troposphere-to-stratosphere heat and moisture exchange.

Full access
Cheng Tao and Haiyan Jiang

Abstract

Shear-relative distributions of four types of precipitation/convection in tropical cyclones (TCs) are statistically analyzed using 14 years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data. The dataset of 1139 TRMM PR overpasses of tropical storms through category-2 hurricanes over global TC-prone basins is divided by future 24-h intensity change. It is found that increased and widespread shallow precipitation (defined as where the 20-dBZ radar echo height <6 km) around the storm center is a first sign of rapid intensification (RI) and could be used as a predictor of the onset of RI. The contribution to total volumetric rain and latent heating from shallow and moderate precipitation (20-dBZ echo height between 6 and 10 km) in the inner core is greater in RI storms than in non-RI storms, while the opposite is true for moderately deep (20-dBZ echo height between 10 and 14 km) and very deep precipitation (20-dBZ echo height ≥14 km). The authors argue that RI is more likely triggered by the increase of shallow–moderate precipitation and the appearance of more moderately to very deep convection in the middle of RI is more likely a response or positive feedback to changes in the vortex. For RI storms, a cyclonic rotation of frequency peaks from shallow (downshear right) to moderate (downshear left) to moderately and very deep precipitation (upshear left) is found and may be an indicator of a rapidly strengthening vortex. A ring of almost 90% occurrence of total precipitation is found for storms in the middle of RI, consistent with the previous finding of the cyan and pink ring on the 37-GHz color product.

Full access
Cheng Tao and Haiyan Jiang

Abstract

Global distribution of hot towers in tropical cyclones (TCs) is statistically quantified using an 11-yr Tropical Rainfall Measuring Mission (TRMM) Tropical Cyclone Precipitation Feature (TCPF) database. From 6003 individual TRMM overpasses of 869 TCs, about 1.6% of TC convective systems are found to penetrate 14 km and about 0.1% of them even reach the 380-K potential temperature level. Among six TC-prone basins, the highest population of TC convective systems and those with hot towers are found over the northwest Pacific (NWP) basin. However, the greatest percentage of TCPFs that are hot towers [overshooting TCPFs (OTCPFs)] is found over the North Indian Ocean basin. Larger overshooting distance and ice mass are also found in this basin. The monthly variation of OTCPFs resembles that of TC activities in each basin. The percentage of OTCPFs is much higher in the inner core (IC) region (10%) than that in the inner rainband (IB; 2%) and outer rainband (OB; 1%) regions. OTCPFs in the IC region have much larger overshooting distance, area, volume, and ice mass than those in the IB and OB regions. The percentage of OTCPFs in the IC region increases as both TC intensity and intensification rate increase. About 17% of IC features in rapidly intensifying storms penetrate over 14 km, while the percentage is down to 11% for slowly intensifying, 9% for neutral, and 8% for weakening storms. A very good linear relationship is found between TC intensification rate and the percentage of TCPFs that are hot towers in the IC region.

Full access
Xiang Wang and Haiyan Jiang

Abstract

There is uncertainty as to whether the typical warm-core structure of tropical cyclones (TCs) is featured as an upper-level warm core or not. It has been hypothesized that data from the satellite-borne Advanced Microwave Sounding Unit (AMSU) are inadequate to resolve a realistic TC warm-core structure. This study first evaluates 13 years of Atmospheric Infrared Sounder (AIRS) temperature retrieval against recent dropsonde measurements in TCs. AIRS can resolve the TC warm-core structure well, comparable to the dropsonde observations, although the AMSU-A retrievals fail to do so. Using 13-yr AIRS data in global TCs, a global climatology of the TC warm-core structure is generated in this study. The typical warm-core height is at the upper level around 300–400 hPa for all TCs and increases with TC intensity: 400 hPa (~8 km) for tropical storms, 300 hPa (~10 km) for category 1–3 hurricanes, 250–300 hPa (~10–11 km) for category 4 hurricanes, and 150 hPa (~14 km) for category 5 hurricanes. The range of warm-core height varies with TC intensity as well. A strong correlation between TC intensity and warm-core strength is found. A weaker but still significant correlation between TC intensity and warm-core height is also found.

Full access
Bradley W. Klotz and Haiyan Jiang

Abstract

Because surface wind speeds within tropical cyclones are important for operational and research interests, it is vital to understand surface wind structure in relation to various storm and environmental influences. In this study, global rain-corrected scatterometer winds are used to quantify and evaluate characteristics of tropical cyclone surface wind asymmetries using a modified version of a proven aircraft-based low-wavenumber analysis tool. The globally expanded surface wind dataset provides an avenue for a robust statistical analysis of the changes in structure due to tropical cyclone intensity, deep-layer vertical wind shear, and wind shear’s relationship with forward storm motion. A presentation of the quantified asymmetry indicates that wind shear has a significant influence on tropical storms at all radii but only for areas away from the radius of maximum wind in both nonmajor and major hurricanes. Evaluation of a shear’s directional relation to motion indicates that a cyclonic rotation of the surface wind field asymmetry from downshear left to upshear left occurs in conjunction with an anticyclonic rotation of the directional relationship (i.e., from shear direction to the left, same, right, or opposite of the motion direction). It was discovered that in tropical cyclones experiencing effects from wind shear, an increase in absolute angular momentum transport occurs downshear and often downshear right. The surface wind speed low-wavenumber maximum in turn forms downwind of this momentum transport.

Full access
Haiyan Jiang and Edward J. Zipser

Abstract

A retrieval algorithm is described to estimate vertical profiles of precipitation ice water content and liquid water content in tropical cyclones and convection over ocean from combined spaceborne radar and radiometer measurements. In the algorithm, the intercept parameter N 0s in the exponential particle size distribution for rain, snow, and graupel are adjusted iteratively to minimize the difference between observed brightness temperatures and simulated ones by using a simulated annealing optimization method. Sensitivity tests are performed to understand the effects of the input parameters. The retrieval technique is investigated using the Earth Resources (ER)-2 aircraft Doppler radar and Advanced Microwave Precipitation Radiometer data in tropical cyclones and convection. An indirect validation is performed by comparing the measured and retrieved 50-GHz (independent channel) brightness temperature. The global agreement shows not only the quality of the inversion procedure, but also the consistency of the retrieved parameters with observations. The direct validation of the ice water content retrieval by using the aircraft in situ microphysical measurements indicates that the algorithm can provide reliable ice water content estimates, especially in stratiform regions. In convective regions, the large variability of the microphysical characteristics causes a large uncertainty in the retrieval, although the mean difference between the retrieved ice water content and aircraft-derived ice water content is very small. The ice water content estimated by a radar-only empirical relationship is higher than those retrieved by the combined algorithm and derived by the aircraft in situ observations. The new combined algorithm contains information that should improve ice water content estimates from either radar-only or passive microwave–only measurements. An important caveat for this study is that it concerns precipitation estimates. In this paper, ice and liquid water content should be interpreted as precipitation ice and liquid water content.

Full access
Haiyan Jiang and Ellen M. Ramirez

Abstract

Rainfall and convective properties of tropical cyclones (TCs) are statistically quantified for different TC intensity change categories by using Tropical Rainfall Measuring Mission (TRMM) data from December 1997 to December 2008. Four 24-h future intensity change categories are defined: rapidly intensifying (RI), slowly intensifying, neutral, and weakening. It is found that RI storms always have a larger raining area and total volumetric rain in the inner core. The maximum convective intensity in the inner core is not necessarily more intense prior to undergoing an RI episode than a slowly intensifying, neutral, or weakening episode. Instead, a minimum threshold of raining area, total volumetric rain, and convective intensity in the inner core is determined from the RI cases examined in this study. The following necessary conditions for RI are found in the inner core: total raining area > 3000 km2, total volumetric rain > 5000 mm h−1 km2, maximum near-surface radar reflectivity > 40 dBZ, maximum 20-dBZ (40 dBZ) echo height > 8 (4) km, minimum 85-GHz polarization–corrected brightness temperature (PCT) < 235 K, and minimum 10.8-μm brightness temperature < 220 K. To the extent that these thresholds represent all RI cases, they should be of value to forecasters for ruling out RI. This study finds that total lightning activities in the inner core (outer rainband) have a negative (positive) relationship with storm intensification.

Full access
Joseph P. Zagrodnik and Haiyan Jiang

Abstract

Rainfall estimates from versions 6 (V6) and 7 (V7) of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) 2A25 and Microwave Imager (TMI) 2A12 algorithms are compared relative to the Next Generation Weather Radar (NEXRAD) Multisensor Precipitation Estimate stage-IV hourly rainfall product. The dataset consists of 252 TRMM overpasses of tropical cyclones from 2002 to 2010 within a 230-km range of southeastern U.S. Weather Surveillance Radar-1988 Doppler (WSR-88D) sites. All rainfall estimates are averaged to a uniform 1/7° square grid. The grid boxes are also divided by their TMI surface designation (land, ocean, or coast). A detailed statistical analysis is undertaken to determine how changes to the TRMM rainfall algorithms in the latest version (V7) are influencing the rainfall retrievals relative to ground reference data. Version 7 of the PR 2A25 is the best-performing algorithm over all three surface types. Over ocean, TMI 2A12 V7 is improved relative to V6 at high rain rates. At low rain rates, the new ocean TMI V7 probability-of-rain parameter creates ambiguity in differentiating light rain (≤0.5 mm h−1) and nonraining areas. Over land, TMI V7 underestimates stage IV more than V6 does at a wide range of rain rates, resulting in an increased negative bias. Both versions of the TMI coastal algorithm are also negatively biased at both moderate and heavy rain rates. Some of the TMI biases can be explained by uncertain relationships between rain rate and 85-GHz ice scattering.

Full access