Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Hamed Ashouri x
  • All content x
Clear All Modify Search
Phu Nguyen, Andrea Thorstensen, Soroosh Sorooshian, Kuolin Hsu, Amir Aghakouchak, Hamed Ashouri, Hoang Tran, and Dan Braithwaite

Abstract

Little dispute surrounds the observed global temperature changes over the past decades. As a result, there is widespread agreement that a corresponding response in the global hydrologic cycle must exist. However, exactly how such a response manifests remains unsettled. Here we use a unique recently developed long-term satellite-based record to assess changes in precipitation across spatial scales. We show that warm climate regions exhibit decreasing precipitation trends, while arid and polar climate regions show increasing trends. At the country scale, precipitation seems to have increased in 96 countries, and decreased in 104. We also explore precipitation changes over 237 global major basins. Our results show opposing trends at different scales, highlighting the importance of spatial scale in trend analysis. Furthermore, while the increasing global temperature trend is apparent in observations, the same cannot be said for the global precipitation trend according to the high-resolution dataset, PERSIANN-CDR, used in this study.

Open access
Hamed Ashouri, Phu Nguyen, Andrea Thorstensen, Kuo-lin Hsu, Soroosh Sorooshian, and Dan Braithwaite

Abstract

This study aims to investigate the performance of Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR) in a rainfall–runoff modeling application over the past three decades. PERSIANN-CDR provides precipitation data at daily and 0.25° temporal and spatial resolutions from 1983 to present for the 60°S–60°N latitude band and 0°–360° longitude. The study is conducted in two phases over three test basins from the Distributed Hydrologic Model Intercomparison Project, phase 2 (DMIP2). In phase 1, a more recent period of time (2003–10) when other high-resolution satellite-based precipitation products are available is chosen. Precipitation evaluation analysis, conducted against stage IV gauge-adjusted radar data, shows that PERSIANN-CDR and TRMM Multisatellite Precipitation Analysis (TMPA) have close performances with a higher correlation coefficient for TMPA (~0.8 vs 0.75 for PERSIANN-CDR) and almost the same root-mean-square deviation (~6) for both products. TMPA and PERSIANN-CDR outperform PERSIANN, mainly because, unlike PERSIANN, TMPA and PERSIANN-CDR are gauge-adjusted precipitation products. The National Weather Service Office of Hydrologic Development Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) is then forced with PERSIANN, PERSIANN-CDR, TMPA, and stage IV data. Quantitative analysis using five different statistical and model efficiency measures against USGS streamflow observation show that in general in all three DMIP2 basins, the simulated hydrographs forced with PERSIANN-CDR and TMPA have close agreement. Given the promising results in the first phase, the simulation process is extended back to 1983 where only PERSIANN-CDR rainfall estimates are available. The results show that PERSIANN-CDR-derived streamflow simulations are comparable to USGS observations with correlation coefficients of ~0.67–0.73, relatively low biases (~5%–12%), and high index of agreement criterion (~0.68–0.83) between PERSIANN-CDR-simulated daily streamflow and USGS daily observations. The results prove the capability of PERSIANN-CDR in hydrological rainfall–runoff modeling application, especially for long-term streamflow simulations over the past three decades.

Full access
Chiyuan Miao, Hamed Ashouri, Kuo-Lin Hsu, Soroosh Sorooshian, and Qingyun Duan

Abstract

This study evaluates the performance of a newly developed daily precipitation climate data record, called Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR), in capturing the behavior of daily extreme precipitation events in China during the period of 1983–2006. Different extreme precipitation indices, in the three categories of percentile, absolute threshold, and maximum indices, are studied and compared with the same indices from the East Asia (EA) ground-based gridded daily precipitation dataset. The results show that PERSIANN-CDR depicts similar precipitation behavior as the ground-based EA product in terms of capturing the spatial and temporal patterns of daily precipitation extremes, particularly in the eastern China monsoon region, where the intensity and frequency of heavy rainfall events are very high. However, the agreement between the datasets in dry regions such as the Tibetan Plateau in the west and the Taklamakan Desert in the northwest is not strong. An important factor that may have influenced the results is that the ground-based stations from which EA gridded data were produced are very sparse. In the station-rich regions in eastern China, the performance of PERSIANN-CDR is significant. PERSIANN-CDR slightly underestimates the values of extreme heavy precipitation.

Full access
Hamed Ashouri, Soroosh Sorooshian, Kuo-Lin Hsu, Michael G. Bosilovich, Jaechoul Lee, Michael F. Wehner, and Allison Collow

Abstract

This study evaluates the performance of NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA) precipitation product in reproducing the trend and distribution of extreme precipitation events. Utilizing the extreme value theory, time-invariant and time-variant extreme value distributions are developed to model the trends and changes in the patterns of extreme precipitation events over the contiguous United States during 1979–2010. The Climate Prediction Center (CPC) U.S. Unified gridded observation data are used as the observational dataset. The CPC analysis shows that the eastern and western parts of the United States are experiencing positive and negative trends in annual maxima, respectively. The continental-scale patterns of change found in MERRA seem to reasonably mirror the observed patterns of change found in CPC. This is not previously expected, given the difficulty in constraining precipitation in reanalysis products. MERRA tends to overestimate the frequency at which the 99th percentile of precipitation is exceeded because this threshold tends to be lower in MERRA, making it easier to be exceeded. This feature is dominant during the summer months. MERRA tends to reproduce spatial patterns of the scale and location parameters of the generalized extreme value and generalized Pareto distributions. However, MERRA underestimates these parameters, particularly over the Gulf Coast states, leading to lower magnitudes in extreme precipitation events. Two issues in MERRA are identified: 1) MERRA shows a spurious negative trend in Nebraska and Kansas, which is most likely related to the changes in the satellite observing system over time that has apparently affected the water cycle in the central United States, and 2) the patterns of positive trend over the Gulf Coast states and along the East Coast seem to be correlated with the tropical cyclones in these regions. The analysis of the trends in the seasonal precipitation extremes indicates that the hurricane and winter seasons are contributing the most to these trend patterns in the southeastern United States. In addition, the increasing annual trend simulated by MERRA in the Gulf Coast region is due to an incorrect trend in winter precipitation extremes.

Full access
Phu Nguyen, Andrea Thorstensen, Soroosh Sorooshian, Qian Zhu, Hoang Tran, Hamed Ashouri, Chiyuan Miao, KuoLin Hsu, and Xiaogang Gao

Abstract

The purpose of this study is to use the PERSIANN–Climate Data Record (PERSIANN-CDR) dataset to evaluate the ability of 32 CMIP5 models in capturing the behavior of daily extreme precipitation estimates globally. The daily long-term historical global PERSIANN-CDR allows for a global investigation of eight precipitation indices that is unattainable with other datasets. Quantitative comparisons against CPC daily gauge; GPCP One-Degree Daily (GPCP1DD); and TRMM 3B42, version 7 (3B42V7), datasets show the credibility of PERSIANN-CDR to be used as the reference data for global evaluation of CMIP5 models. This work uniquely defines different study regions by partitioning global land areas into 25 groups based on continent and climate zone type. Results show that model performance in warm temperate and equatorial regions in capturing daily extreme precipitation behavior is largely mixed in terms of index RMSE and correlation, suggesting that these regions may benefit from weighted model averaging schemes or model selection as opposed to simple model averaging. The three driest climate regions (snow, polar, and arid) exhibit high correlations and low RMSE values when compared against PERSIANN-CDR estimates, with the exceptions of the cold regions showing an inability to capture the 95th and 99th percentile annual total precipitation characteristics. A comprehensive assessment of each model’s performance in each continent–climate zone defined group is provided as a guide for both model developers to target regions and processes that are not yet fully captured in certain climate types, and for climate model output users to be able to select the models and/or the study areas that may best fit their applications of interest.

Full access
Phu Nguyen, Soroosh Sorooshian, Andrea Thorstensen, Hoang Tran, Phat Huynh, Thanh Pham, Hamed Ashouri, Kuolin Hsu, Amir AghaKouchak, and Dan Braithwaite
Full access
Hamed Ashouri, Kuo-Lin Hsu, Soroosh Sorooshian, Dan K. Braithwaite, Kenneth R. Knapp, L. Dewayne Cecil, Brian R. Nelson, and Olivier P. Prat

Abstract

A new retrospective satellite-based precipitation dataset is constructed as a climate data record for hydrological and climate studies. Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR) provides daily and 0.25° rainfall estimates for the latitude band 60°S–60°N for the period of 1 January 1983 to 31 December 2012 (delayed present). PERSIANN-CDR is aimed at addressing the need for a consistent, long-term, high-resolution, and global precipitation dataset for studying the changes and trends in daily precipitation, especially extreme precipitation events, due to climate change and natural variability. PERSIANN-CDR is generated from the PERSIANN algorithm using GridSat-B1 infrared data. It is adjusted using the Global Precipitation Climatology Project (GPCP) monthly product to maintain consistency of the two datasets at 2.5° monthly scale throughout the entire record. Three case studies for testing the efficacy of the dataset against available observations and satellite products are reported. The verification study over Hurricane Katrina (2005) shows that PERSIANN-CDR has good agreement with the stage IV radar data, noting that PERSIANN-CDR has more complete spatial coverage than the radar data. In addition, the comparison of PERSIANN-CDR against gauge observations during the 1986 Sydney flood in Australia reaffirms the capability of PERSIANN-CDR to provide reasonably accurate rainfall estimates. Moreover, the probability density function (PDF) of PERSIANN-CDR over the contiguous United States exhibits good agreement with the PDFs of the Climate Prediction Center (CPC) gridded gauge data and the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) product. The results indicate high potential for using PERSIANN-CDR for long-term hydroclimate studies in regional and global scales.

Full access