Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: Hans-F. Graf x
  • Refine by Access: All Content x
Clear All Modify Search
Till M. Wagner
and
Hans-F. Graf

Abstract

The paper describes a convection parameterization employing a new formulation of the quasi-equilibrium closure hypothesis of Arakawa and Schubert. The scheme models a full spectrum of different cumulus clouds and its evolution within one time step of the host global climate model. Each cloud is simulated using a one-dimensional Lagrangian entraining parcel model, which includes mixed phase microphysics and vertical velocity. Hence, the model delivers explicit information on distribution of vertical velocities, precipitation intensities, cloud heights, and cloud coverage. The parameterization is evaluated in the ECHAM single-column model for midlatitude summer and tropical convection. Results show an improved temporal distribution, including the diurnal cycle, of convective heating and moistening in comparison to the Tiedtke–Nordeng scheme, which is the standard convection parameterization within ECHAM. The amount and temporal distribution of precipitation are clearly improved compared with the original parameterization. The convective cloud field model (CCFM) does not produce spurious convection events occurring with the standard parameterization.

Full access
Judith Perlwitz
and
Hans-F. Graf

Abstract

The associated anomaly patterns of the stratospheric geopotential height field and the tropospheric geopetential and temperature height fields of the Northern Hemisphere are determined applying the canonical correlation analysis. With this linear multivariate technique the coupled modes of variability of lime series of two fields are isolated in the space of empirical orthogonal functions. The one dataset is the 50-hPa geopotential height field; the other set consists of different height fields of the tropospheric pressure levels (200, 500, 700, and 850 hPa) and the temperature of the 850-hPa pressure level. For the winter months (December, January, February) two natural coupled modes, a barotropic and a baroclinic one, of linear relationship between stratospheric and tropospheric circulation are found. The baroclinic mode describes a connection between the strength of the stratospheric cyclonic winter vortex and the tropospheric circulation over the North Atlantic. The corresponding temperature pattern for an anomalously strong stratospheric cyclonic vortex is characterized by positive temperature anomalies over higher latitudes of Eurasia. These “Winter Warmings” are observed, for example, after violent volcanic eruptions. The barotropic mode is characterized by a zonal wavenumber 1 in the lower stratosphere and by a PNA-like pattern in the troposphere. It was shown by van Loon and Labitzke that this mode can be enhanced, for example, by El Niños via the intensification of the Aleutian low.

Full access
Till M. Wagner
,
Hans-F. Graf
, and
Michael Herzog
Full access
Michael Herzog
,
Josef M. Oberhuber
, and
Hans-F. Graf

Abstract

The presented turbulence scheme was developed for the Active Tracer High-Resolution Atmospheric Model (ATHAM) to parameterize the effect of subgrid-scale turbulence. In contrast to the commonly used assumption of local isotropy in high-resolution atmospheric modeling, this scheme differentiates between horizontal and vertical turbulent exchange to represent the strong influence of buoyancy forces and vertical transports. Its computational efficiency is similar to classical turbulent kinetic energy approaches while preserving one of the main feature of higher-order schemes. The present extensions to include anisotropic effects in a turbulent kinetic energy approach do not need any ad hoc assumptions and are equivalent to the classical formulation in the isotropic limit.

The presence of high tracer concentrations in a particle-laden plume is taken into account, as well as supersonic effects at low Mach numbers. The turbulent exchange coefficients used in the equations of motion are derived from a set of three coupled differential equations for the horizontal and vertical turbulent energy and the turbulent length scale. No turbulent equilibrium is assumed. All turbulent quantities are treated prognostically.

Numerical simulations of convective plumes of a typical Plinian volcanic eruption with the nonhydrostatic plume model ATHAM reveal that a complex treatment of turbulent quantities is necessary in order to capture the bulk characteristics of the plume, such as the plume height, the horizontal extent, and plume development in time. Anisotropic effects of turbulence have a significant impact on the stability and internal structure of the plume. For the first time, results from a fully three-dimensional simulation of a volcanic plume are presented.

Because of its general formulation the presented turbulence scheme is suitable for a wide range of atmospheric applications.

Full access
Andy Wang-Chun Lai
,
Michael Herzog
, and
Hans-F. Graf

Abstract

A cross-validated statistical model has been developed to produce hindcasts for the 1980–2016 November–December–January (NDJ; assumed El Niño peak) mean Niño-3.4 sea surface temperature anomalies (SSTA). A linear combination of two parameters is sufficient to successfully predict the peak SSTA: 1) the 5°N–5°S, 130°E–180°, 5–250-m oceanic potential temperature anomalies in February and 2) the 5°N–5°S, 140°E–160°W cumulative zonal wind anomalies (ZWA), integrated from November (one year before) up to the prediction month. This model is simple but is comparable to, or even outperforms, many NOAA Climate Prediction Center’s statistical models during the boreal spring predictability barrier. In contrast to most statistical models, the predictand Niño-3.4 SSTA is not used as a predictor. The explained variance between observed and predicted NDJ Niño-3.4 SSTA at a lead time of 8 months is 57% using 5 yr for cross validation and 63% in full hindcast mode.Predictive skill is lower after 2000 when the mean climate state is more La Niña–like because of stronger equatorial easterly ZWA. Strengthened Pacific subtropical highs are observed, with weaker westerly ZWA that emerge at a later time during El Niño. The western Pacific is more recharged, with stronger upwelling over the eastern Pacific. The resulting strong zonal subsurface temperature gradient provides a high potential for Kelvin waves being triggered without strong westerly ZWA. However, the persistent easterly ZWA lead to more central Pacific–like El Niños. These are more difficult to predict because the contribution of the thermocline feedback is reduced. Overall, the authors find that the importance of the recharge state for ENSO prediction has increased after 2000, contradicting some previous studies.

Full access
Shangfeng Chen
,
Wen Chen
,
Renguang Wu
,
Bin Yu
, and
Hans-F. Graf

Abstract

The present study reveals a close relation between the interannual variation of Aleutian low intensity (ALI) in March and the subsequent winter El Niño–Southern Oscillation (ENSO). When March ALI is weaker (stronger) than normal, an El Niño (a La Niña)–like sea surface temperature (SST) warming (cooling) tends to appear in the equatorial central-eastern Pacific during the subsequent winter. The physical process linking March ALI to the following winter ENSO is as follows. When March ALI is below normal, a notable atmospheric dipole pattern develops over the North Pacific, with an anticyclonic anomaly over the Aleutian region and a cyclonic anomaly over the subtropical west-central Pacific. The formation of the anomalous cyclone is attributed to feedback of the synoptic-scale eddy-to-mean-flow energy flux and associated vorticity transportation. Specifically, easterly wind anomalies over the midlatitudes related to the weakened ALI are accompanied by a decrease in synoptic-scale eddy activity, which forces an anomalous cyclone to its southern flank. The accompanying westerly wind anomalies over the tropical west-central Pacific induce SST warming in the equatorial central-eastern Pacific during the following summer–autumn via triggering eastward-propagating warm Kelvin waves, which may sustain and develop into an El Niño event during the following winter via positive air–sea feedback. The relation of March ALI with the following winter ENSO is independent of the preceding tropical Pacific SST, the preceding-winter North Pacific Oscillation, and the spring Arctic Oscillation. The results of this analysis may provide an additional source for the prediction of ENSO.

Free access
Shuoyi Ding
,
Wen Chen
,
Juan Feng
, and
Hans-F. Graf

Abstract

Combined impacts of the Pacific decadal oscillation (PDO) and two types of La Niña on climate anomalies in Europe are studied. Particularly, the conjunction of the negative PDO phase and two different types of La Niña events favors strong and significant North Atlantic Oscillation (NAO) pattern anomalies with opposite polarity. For the central Pacific (CP) La Niña, a clear positive NAO signal can be detected, which is accompanied by positive surface air temperature (SAT) anomaly and a dipolar structure of precipitation anomalies in Europe. In addition, a typical negative Pacific–North America (PNA) teleconnection pattern forms, including a high pressure anomaly over the southeastern United States, which may contribute to the development and maintenance of the NAO anomaly by strengthening the baroclinicity and the local eddy–mean flow interaction. However, for the eastern Pacific (EP) La Niña, a zonal wave train in the high latitudes can be observed, which is quite different from the typical PNA structure. Here, an anomalous anticyclone over southern Greenland supports a negative NAO pattern through the local eddy–mean flow interaction and the associated vorticity advection. Hence, reversed SAT and precipitation anomalies occur over Europe. Further analyses indicate that the wave trains emanating from the North Pacific and the synoptic eddy–mean flow interaction play essential roles in forming the anomalous NAO phases. The different wave trains for the CP and EP La Niña events may be attributed to the differences in the location and intensity of anomalous convection induced by different types of SST anomaly as well as by the corresponding background westerly wind anomalies in the upper troposphere.

Full access
Xuefeng Cui
,
Hans-F. Graf
,
Baerbel Langmann
,
Wen Chen
, and
Ronghui Huang

Abstract

The hydrological impact of forest removal on the southeast Tibetan Plateau during the second half of the last century is investigated in this study using an atmospheric general circulation model. The effects of deforestation are investigated by examining the differences between the forest replacement and control experiments. Model results demonstrate that deforestation of the southeast Tibetan Plateau would influence the local and the remote climate as well. It would lead to decreased transpiration and increased summer precipitation in the deforested area and a wetter and warmer climate on the Tibetan Plateau in summer. This may produce more runoff into the rivers originating from the Tibetan Plateau and worsen flooding disasters in the downstream areas. The numerical experiments also show that deforestation would remotely impact Asian climate, and even global climate, although the statistical significance is small. A strong drought is found at middle and lower reaches of the Yellow River, where livelihoods and economics have suffered from recent droughts. Ecosystem research on the Tibetan Plateau is a relatively new topic and needs further interdisciplinary investigation.

Full access
Jun-Ichi Yano
,
Hans-F. Graf
, and
Florin Spineanu
Full access
Tianjiao Ma
,
Wen Chen
,
Hans-F. Graf
,
Shuoyi Ding
,
Peiqiang Xu
,
Lei Song
, and
Xiaoqing Lan

Abstract

The present study investigates different impacts of the East Asian winter monsoon (EAWM) on surface air temperature (Ts) in North America (NA) during ENSO and neutral ENSO episodes. In neutral ENSO years, the EAWM shows a direct impact on the Ts anomalies in NA on an interannual time scale. Two Rossby wave packets appear over the Eurasian–western Pacific (upstream) and North Pacific–NA (downstream) regions associated with a strong EAWM. Further analysis suggests that the downstream wave packet is caused by reflection of the upstream wave packet over the subtropical western Pacific and amplified over the North Pacific. Also, the East Asian subtropical westerly jet stream (EAJS) is intensified in the central and downstream region over the central North Pacific. Hence, increased barotropic kinetic energy conversion and the interaction between transient eddies and the EAJS tend to maintain the circulation anomaly over the North Pacific. Therefore, a strong EAWM tends to result in warm Ts anomalies in northwestern NA via the downstream wave packet emanating from the central North Pacific toward NA. A weak EAWM tends to induce cold Ts anomalies in western-central NA with a smaller magnitude. However, in ENSO years, an anomalous EAJS is mainly confined over East Asia and does not extend into the central North Pacific. The results confirm that the EAWM has an indirect impact on the Ts anomalies in NA via a modulation of the tropical convection anomalies associated with ENSO. Our results indicate that, for seasonal prediction of Ts anomalies in NA, the influence of the EAWM should be taken into account. It produces different responses in neutral ENSO and in ENSO years.

Free access