Search Results
You are looking at 1 - 10 of 13 items for
- Author or Editor: Harm J. J. Jonker x
- Refine by Access: All Content x
Abstract
In this study large-eddy simulations (LES) are used to gain more knowledge on the shell of subsiding air that is frequently observed around cumulus clouds. First, a detailed comparison between observational and numerical results is presented to better validate LES as a tool for studies of microscale phenomena. It is found that horizontal cloud profiles of vertical velocity, humidity, and temperature are in good agreement with observations. They show features similar to the observations, including the presence of the shell of descending air around the cloud. Second, the availability of the complete 3D dataset in LES has been exploited to examine the role of lateral mixing in the exchange of cloud and environmental air. The origin of the subsiding shell is examined by analyzing the individual terms of the vertical momentum equation. Buoyancy is found to be the driving force for this shell, and it is counteracted by the pressure-gradient force. This shows that evaporative cooling at the cloud edge, induced by lateral mixing of cloudy and environmental air, is the responsible mechanism behind the descending shell. For all clouds, and especially the smaller ones, the negative mass flux generated by the subsiding shell is significant. This suggests an important role for lateral mixing throughout the entire cloud layer. The role of the shell in these processes is further explored and described in a conceptual three-layer model of the cloud.
Abstract
In this study large-eddy simulations (LES) are used to gain more knowledge on the shell of subsiding air that is frequently observed around cumulus clouds. First, a detailed comparison between observational and numerical results is presented to better validate LES as a tool for studies of microscale phenomena. It is found that horizontal cloud profiles of vertical velocity, humidity, and temperature are in good agreement with observations. They show features similar to the observations, including the presence of the shell of descending air around the cloud. Second, the availability of the complete 3D dataset in LES has been exploited to examine the role of lateral mixing in the exchange of cloud and environmental air. The origin of the subsiding shell is examined by analyzing the individual terms of the vertical momentum equation. Buoyancy is found to be the driving force for this shell, and it is counteracted by the pressure-gradient force. This shows that evaporative cooling at the cloud edge, induced by lateral mixing of cloudy and environmental air, is the responsible mechanism behind the descending shell. For all clouds, and especially the smaller ones, the negative mass flux generated by the subsiding shell is significant. This suggests an important role for lateral mixing throughout the entire cloud layer. The role of the shell in these processes is further explored and described in a conceptual three-layer model of the cloud.
Abstract
In this study the response of dry convective boundary layers to nonstationary surface heat fluxes is systematically investigated. This is relevant not only during sunset and sunrise but also, for example, when clouds modulate incoming solar radiation. Because the time scale of the associated change in surface heat fluxes may differ from case to case, the authors consider the generic situation of oscillatory surface heat fluxes with different frequencies and amplitudes and study the response of the boundary layer in terms of transfer functions. To this end both a mixed layer model (MLM) and a large-eddy simulation (LES) model are used; the latter is used to evaluate the predictive quality of the mixed layer model. The mixed layer model performs generally quite well for slow changes in the surface heat flux and provides analytical understanding of the transfer characteristics of the boundary layer such as amplitude and phase lag. For rapidly changing surface fluxes (i.e., changes within a time frame comparable to the large eddy turnover time), it proves important to account for the time it takes for the information to travel from the surface to higher levels of the boundary layer such as the inversion zone. As a follow-up to a 1997 study by Sorbjan, who showed that the conventional convective velocity scale is inadequate as a scaling quantity during the decay phase, this paper addresses the issue of defining, in (generic) transitional situations, a velocity scale that is solely based on the surface heat flux and its history.
Abstract
In this study the response of dry convective boundary layers to nonstationary surface heat fluxes is systematically investigated. This is relevant not only during sunset and sunrise but also, for example, when clouds modulate incoming solar radiation. Because the time scale of the associated change in surface heat fluxes may differ from case to case, the authors consider the generic situation of oscillatory surface heat fluxes with different frequencies and amplitudes and study the response of the boundary layer in terms of transfer functions. To this end both a mixed layer model (MLM) and a large-eddy simulation (LES) model are used; the latter is used to evaluate the predictive quality of the mixed layer model. The mixed layer model performs generally quite well for slow changes in the surface heat flux and provides analytical understanding of the transfer characteristics of the boundary layer such as amplitude and phase lag. For rapidly changing surface fluxes (i.e., changes within a time frame comparable to the large eddy turnover time), it proves important to account for the time it takes for the information to travel from the surface to higher levels of the boundary layer such as the inversion zone. As a follow-up to a 1997 study by Sorbjan, who showed that the conventional convective velocity scale is inadequate as a scaling quantity during the decay phase, this paper addresses the issue of defining, in (generic) transitional situations, a velocity scale that is solely based on the surface heat flux and its history.
Abstract
This paper examines the combined influences of turbulence and gravity on droplet collision statistics in turbulent clouds by means of direct numerical simulation (DNS). The essential microphysical mechanisms that determine the geometric collision kernel are explored by studying how gravity affects droplet relative velocities and preferential concentration of both monodisperse and bidisperse droplet distributions. To this end, collision statistics of large amounts of droplets with radii ranging from 10 to 90 μm, driven by a turbulent flow field and gravity, are calculated. The flow is homogeneous and isotropic and has a dissipation rate of ϵ = 4.25 × 10−2 m2 s−3. The results show that in the calculation of collision statistics, the interplay between gravity and turbulence is an essential element and not merely an addition of separate phenomena. For example, the presence of gravity leads to clustering of large droplets interacting with the larger scales of turbulence in the DNS. The collision statistics of a bidisperse droplet distribution, even with a very small radius difference, shows profoundly different behavior than the monodisperse case.
Abstract
This paper examines the combined influences of turbulence and gravity on droplet collision statistics in turbulent clouds by means of direct numerical simulation (DNS). The essential microphysical mechanisms that determine the geometric collision kernel are explored by studying how gravity affects droplet relative velocities and preferential concentration of both monodisperse and bidisperse droplet distributions. To this end, collision statistics of large amounts of droplets with radii ranging from 10 to 90 μm, driven by a turbulent flow field and gravity, are calculated. The flow is homogeneous and isotropic and has a dissipation rate of ϵ = 4.25 × 10−2 m2 s−3. The results show that in the calculation of collision statistics, the interplay between gravity and turbulence is an essential element and not merely an addition of separate phenomena. For example, the presence of gravity leads to clustering of large droplets interacting with the larger scales of turbulence in the DNS. The collision statistics of a bidisperse droplet distribution, even with a very small radius difference, shows profoundly different behavior than the monodisperse case.
Abstract
The rapid transition from shallow to deep convection is investigated using large-eddy simulations. The role of cold pools, which occur due to the evaporation of rainfall, is explored using a series of experiments in which their formation is suppressed. A positive feedback occurs: the presence of cold pools promotes deeper, wider, and more buoyant clouds with higher precipitation rates, which in turn lead to stronger cold pools. To assess the influence of the subcloud layer on the development of deep convection, the coupling between the cloud layer and the subcloud layer is explored using Lagrangian particle trajectories. As shown in previous studies, particles that enter clouds have properties that deviate significantly from the mean state. However, the differences between particles that enter shallow and deep clouds are remarkably small in the subcloud layer, and become larger in the cloud layer, indicating different entrainment rates. The particles that enter the deepest clouds also correspond to the widest cloud bases, which points to the importance of convective organization within the subcloud layer.
Abstract
The rapid transition from shallow to deep convection is investigated using large-eddy simulations. The role of cold pools, which occur due to the evaporation of rainfall, is explored using a series of experiments in which their formation is suppressed. A positive feedback occurs: the presence of cold pools promotes deeper, wider, and more buoyant clouds with higher precipitation rates, which in turn lead to stronger cold pools. To assess the influence of the subcloud layer on the development of deep convection, the coupling between the cloud layer and the subcloud layer is explored using Lagrangian particle trajectories. As shown in previous studies, particles that enter clouds have properties that deviate significantly from the mean state. However, the differences between particles that enter shallow and deep clouds are remarkably small in the subcloud layer, and become larger in the cloud layer, indicating different entrainment rates. The particles that enter the deepest clouds also correspond to the widest cloud bases, which points to the importance of convective organization within the subcloud layer.
Abstract
Mixing processes in deep precipitating cumulus clouds are investigated by tracking Lagrangian particles in a large-eddy simulation. The trajectories of particles are reconstructed and the thermodynamic properties of cloud air are studied using mixing diagrams. The trajectory analysis shows that the in-cloud mixing is entirely dominated by lateral entrainment and that there is no significant vertical mixing by downdrafts originating from cloud top. Yet the thermodynamic properties of the particles are located close to a line in the mixing diagrams, which appears to be consistent with two-point vertical mixing. An attempt is made to resolve this paradox using the buoyancy-sorting model of Taylor and Baker, but it is found that this model does not provide a full explanation for the location of particles in the mixing diagram. However, it is shown that the mixing-line behavior can be well understood from a simple analytically solvable model that uses a range of different lateral entrainment rates. Two further factors that determine the location of particles in the mixing diagram are identified: the removal of noncloudy air and precipitation effects. Finally, a thermodynamic argument is given that explains the absence of coherent downdrafts descending from cloud top.
Abstract
Mixing processes in deep precipitating cumulus clouds are investigated by tracking Lagrangian particles in a large-eddy simulation. The trajectories of particles are reconstructed and the thermodynamic properties of cloud air are studied using mixing diagrams. The trajectory analysis shows that the in-cloud mixing is entirely dominated by lateral entrainment and that there is no significant vertical mixing by downdrafts originating from cloud top. Yet the thermodynamic properties of the particles are located close to a line in the mixing diagrams, which appears to be consistent with two-point vertical mixing. An attempt is made to resolve this paradox using the buoyancy-sorting model of Taylor and Baker, but it is found that this model does not provide a full explanation for the location of particles in the mixing diagram. However, it is shown that the mixing-line behavior can be well understood from a simple analytically solvable model that uses a range of different lateral entrainment rates. Two further factors that determine the location of particles in the mixing diagram are identified: the removal of noncloudy air and precipitation effects. Finally, a thermodynamic argument is given that explains the absence of coherent downdrafts descending from cloud top.
No abstract available.
No abstract available.
Abstract
The length scale evolution of various quantities in a clear convective boundary layer (CBL), a stratocumulus-topped boundary layer, and three radiatively cooled (“smoke cloud”) convective boundary layers are studied by means of large-eddy simulations on a large horizontal domain (25.6 × 25.6 km2). In the CBL the virtual potential temperature and the vertical velocity fields are dominated by horizontal scales on the order of the boundary layer depth. In contrast, the potential temperature and the specific humidity fields become gradually dominated by mesoscale fluctuations. However, at the mesoscales their effects on the virtual potential temperature fluctuations nearly compensate. It is found that mesoscale fluctuations are negligibly small only for conserved variables that have an entrainment to surface flux ratio close to −0.25, which is about the flux ratio for the buoyancy. In the CBL the moisture and potential temperature flux ratios can have values that significantly deviate from this number.
The geometry of the buoyancy flux was manipulated by cooling the clear convective boundary layer from the top, in addition to a positive buoyancy flux at the surface. For these radiatively cooled cases it is found that both the vertical velocity as well as the virtual potential temperature spectra tend to broaden. The role of the buoyancy flux in their respective prognostic variance equations is discussed. It is argued that in the upper part of the clear CBL, where the mean vertical stratification is stable, vertical velocity variance and virtual potential temperature variance cannot be produced simultaneously. For the stratocumulus case, in which latent heat release effects in the cloud layer play an important role in its dynamics, the field of any quantity, except for the vertical velocity, becomes dominated by mesoscale fluctuations.
In general, the location of the spectral peak of any quantity becoming constrained by the domain size should be avoided. The answer to the question of how large the LES horizontal domain size should be in order to include mesoscale fluctuations will, on the one hand, depend on the type of convection to be simulated and the kind of physical question one aims to address, and, on the other hand, the time duration of the simulation. Only if one aims to study the dynamics of a dry CBL that excludes moisture, a rather small domain size suffices. In case one aims to examine either the spatial evolution of the fields of any arbitrary conserved scalar in the CBL, or any quantity in stratocumulus clouds except for the vertical velocity, a larger domain size that allows the development of mesoscale fluctuations will be necessary.
Abstract
The length scale evolution of various quantities in a clear convective boundary layer (CBL), a stratocumulus-topped boundary layer, and three radiatively cooled (“smoke cloud”) convective boundary layers are studied by means of large-eddy simulations on a large horizontal domain (25.6 × 25.6 km2). In the CBL the virtual potential temperature and the vertical velocity fields are dominated by horizontal scales on the order of the boundary layer depth. In contrast, the potential temperature and the specific humidity fields become gradually dominated by mesoscale fluctuations. However, at the mesoscales their effects on the virtual potential temperature fluctuations nearly compensate. It is found that mesoscale fluctuations are negligibly small only for conserved variables that have an entrainment to surface flux ratio close to −0.25, which is about the flux ratio for the buoyancy. In the CBL the moisture and potential temperature flux ratios can have values that significantly deviate from this number.
The geometry of the buoyancy flux was manipulated by cooling the clear convective boundary layer from the top, in addition to a positive buoyancy flux at the surface. For these radiatively cooled cases it is found that both the vertical velocity as well as the virtual potential temperature spectra tend to broaden. The role of the buoyancy flux in their respective prognostic variance equations is discussed. It is argued that in the upper part of the clear CBL, where the mean vertical stratification is stable, vertical velocity variance and virtual potential temperature variance cannot be produced simultaneously. For the stratocumulus case, in which latent heat release effects in the cloud layer play an important role in its dynamics, the field of any quantity, except for the vertical velocity, becomes dominated by mesoscale fluctuations.
In general, the location of the spectral peak of any quantity becoming constrained by the domain size should be avoided. The answer to the question of how large the LES horizontal domain size should be in order to include mesoscale fluctuations will, on the one hand, depend on the type of convection to be simulated and the kind of physical question one aims to address, and, on the other hand, the time duration of the simulation. Only if one aims to study the dynamics of a dry CBL that excludes moisture, a rather small domain size suffices. In case one aims to examine either the spatial evolution of the fields of any arbitrary conserved scalar in the CBL, or any quantity in stratocumulus clouds except for the vertical velocity, a larger domain size that allows the development of mesoscale fluctuations will be necessary.
Abstract
Mixing between shallow cumulus clouds and their environment is studied using large-eddy simulations. The origin of in-cloud air is studied by two distinct methods: 1) by analyzing conserved variable mixing diagrams (Paluch diagrams) and 2) by tracing back cloud-air parcels represented by massless Lagrangian particles that follow the flow. The obtained Paluch diagrams are found to be similar to many results in the literature, but the source of entrained air found by particle tracking deviates from the source inferred from the Paluch analysis. Whereas the classical Paluch analysis seems to provide some evidence for cloud-top mixing, particle tracking shows that virtually all mixing occurs laterally. Particle trajectories averaged over the entire cloud ensemble also clearly indicate the absence of significant cloud-top mixing in shallow cumulus clouds.
Abstract
Mixing between shallow cumulus clouds and their environment is studied using large-eddy simulations. The origin of in-cloud air is studied by two distinct methods: 1) by analyzing conserved variable mixing diagrams (Paluch diagrams) and 2) by tracing back cloud-air parcels represented by massless Lagrangian particles that follow the flow. The obtained Paluch diagrams are found to be similar to many results in the literature, but the source of entrained air found by particle tracking deviates from the source inferred from the Paluch analysis. Whereas the classical Paluch analysis seems to provide some evidence for cloud-top mixing, particle tracking shows that virtually all mixing occurs laterally. Particle trajectories averaged over the entire cloud ensemble also clearly indicate the absence of significant cloud-top mixing in shallow cumulus clouds.
Abstract
This study has determined energy spectra of turbulent variables in large eddy simulations of the penetrating dry convective boundary layer (microscale convection). The simulated domain has a large aspect ratio, the horizontal size being roughly 16 times the boundary layer depth. It turns out that both the turbulent velocities and the potential temperature exhibit “classic” energy spectra, which means that the dominant contribution to the variance originates from a scale of the order of the boundary layer height.
Surprisingly, the authors find that energy spectra of passive scalars in the convective boundary layer can behave completely differently from the velocity and temperature spectra. Depending on the boundary conditions of the scalar, that is, the surface flux and the entrainment flux, the spectrum is either classical in the aforementioned sense or it is dominated by the smallest wavenumbers, implying that the fluctuations are dominated by the largest scales. Loosely speaking the results can be summarized as follows: if the scalar entrainment flux is a negative fraction (about −½) of the surface flux, the scalar fluctuations are dominated by relatively small scales (∼ boundary layer depth), whereas in most other cases the scalar fluctuations tend to be dominated by the largest scales resolved (∼ tenths of kilometers, i.e., mesoscales). The latter result is rather peculiar since neither the velocity components nor the temperature field contains these large-scale fluctuations.
Abstract
This study has determined energy spectra of turbulent variables in large eddy simulations of the penetrating dry convective boundary layer (microscale convection). The simulated domain has a large aspect ratio, the horizontal size being roughly 16 times the boundary layer depth. It turns out that both the turbulent velocities and the potential temperature exhibit “classic” energy spectra, which means that the dominant contribution to the variance originates from a scale of the order of the boundary layer height.
Surprisingly, the authors find that energy spectra of passive scalars in the convective boundary layer can behave completely differently from the velocity and temperature spectra. Depending on the boundary conditions of the scalar, that is, the surface flux and the entrainment flux, the spectrum is either classical in the aforementioned sense or it is dominated by the smallest wavenumbers, implying that the fluctuations are dominated by the largest scales. Loosely speaking the results can be summarized as follows: if the scalar entrainment flux is a negative fraction (about −½) of the surface flux, the scalar fluctuations are dominated by relatively small scales (∼ boundary layer depth), whereas in most other cases the scalar fluctuations tend to be dominated by the largest scales resolved (∼ tenths of kilometers, i.e., mesoscales). The latter result is rather peculiar since neither the velocity components nor the temperature field contains these large-scale fluctuations.
Abstract
In this paper aircraft observations of shallow cumulus over Florida during the Small Cumulus Microphysics Study (SCMS) are analyzed. Size distributions of cloud fraction, mass flux, and in-cloud buoyancy flux are derived. These distributions provide information on the specific contribution of clouds with a certain horizontal size and reveal, for example, which size has the largest effect on cloud fraction or vertical transport. The analysis of four flights shows that the mass flux and buoyancy flux are dominated by intermediate-sized clouds (horizontal dimension of about 1 km). The cloud fraction, on the other hand, is found to be dominated by the smallest clouds observed. These clouds are additionally found to have a negative contribution to the mass flux, yet a positive contribution to the buoyancy flux.
About 200 flight intersections of cumuli with horizontal sizes larger than 500 m are used to obtain average horizontal cross-section profiles of vertical velocity, liquid water content, liquid water potential temperature, and virtual potential temperature. A thin shell of descending air just around the cloud emerges as a conspicuous feature. Evidence is found that the descent is mainly caused by evaporative cooling, which results from lateral mixing at the cloud boundary.
A Landsat satellite image near the flight region is analyzed to compare the cloud size distributions with the aircraft data. The cloud cover in the image appears to be dominated by much larger clouds than the aircraft observations indicated. To account for the different measurement methodology (two-dimensional versus one-dimensional) an equation with which one can predict the cloud size distribution that results from performing line measurements in a prescribed two-dimensional cumulus field is derived. The equation reveals that the aircraft cloud size distributions are always biased toward smaller cloud sizes. This effect is nevertheless not enough to reconcile the aircraft and satellite data, presumably because the analysis neglects the variability of clouds in the vertical direction.
Abstract
In this paper aircraft observations of shallow cumulus over Florida during the Small Cumulus Microphysics Study (SCMS) are analyzed. Size distributions of cloud fraction, mass flux, and in-cloud buoyancy flux are derived. These distributions provide information on the specific contribution of clouds with a certain horizontal size and reveal, for example, which size has the largest effect on cloud fraction or vertical transport. The analysis of four flights shows that the mass flux and buoyancy flux are dominated by intermediate-sized clouds (horizontal dimension of about 1 km). The cloud fraction, on the other hand, is found to be dominated by the smallest clouds observed. These clouds are additionally found to have a negative contribution to the mass flux, yet a positive contribution to the buoyancy flux.
About 200 flight intersections of cumuli with horizontal sizes larger than 500 m are used to obtain average horizontal cross-section profiles of vertical velocity, liquid water content, liquid water potential temperature, and virtual potential temperature. A thin shell of descending air just around the cloud emerges as a conspicuous feature. Evidence is found that the descent is mainly caused by evaporative cooling, which results from lateral mixing at the cloud boundary.
A Landsat satellite image near the flight region is analyzed to compare the cloud size distributions with the aircraft data. The cloud cover in the image appears to be dominated by much larger clouds than the aircraft observations indicated. To account for the different measurement methodology (two-dimensional versus one-dimensional) an equation with which one can predict the cloud size distribution that results from performing line measurements in a prescribed two-dimensional cumulus field is derived. The equation reveals that the aircraft cloud size distributions are always biased toward smaller cloud sizes. This effect is nevertheless not enough to reconcile the aircraft and satellite data, presumably because the analysis neglects the variability of clouds in the vertical direction.