Search Results

You are looking at 1 - 10 of 85 items for

  • Author or Editor: Harold Brooks x
  • Refine by Access: All Content x
Clear All Modify Search
Harold E. Brooks

Changes over the years in tornado-warning performance in the United States can be modeled from the perspective of signal detection theory. From this view, it can be seen that there have been distinct periods of change in performance, most likely associated with deployment of radars, and changes in scientific understanding and training. The model also makes it clear that improvements in the false alarm ratio can only occur at the cost of large decreases in the probability of detection, or with large improvements in the overall quality of the warning system.

Full access
Harold E. Brooks

Abstract

Reported path lengths and widths of tornadoes have been modeled using Weibull distributions for different Fujita (F) scale values. The fits are good over a wide range of lengths and widths. Path length and width tend to increase with increasing F scale, although the temporal nonstationarity of the data for some parts of the data (such as width of F3 tornadoes) is large enough that caution must be exercised in interpretation of short periods of record. The statistical distributions also demonstrate that, as the length or width increases, the most likely F-scale value associated with the length or width tends to increase. Nevertheless, even for long or wide tornadoes, there is a significant probability of a range of possible F values, so that simple observation of the length or width is insufficient to make an accurate estimate of the F scale.

Full access
Harold E. Brooks
and
David J. Stensrud

Abstract

Flash flooding is frequently associated with heavy precipitation (defined here as ≥1 in. h−1) occurring over a short period of time. To begin a study of flash flood–producing rain events, the Hourly Precipitation Dataset (HPD) is used to develop a climatology of heavy rains on timescales of 3 h or less across the contiguous United States. Analyses of this dataset show a distinct seasonal cycle in the distribution of heavy rain events that begins along the Gulf Coast and expands into the midwestern states during the summer. This general evolution is very similar to that observed for flash floods, suggesting that the HPD can help in defining the climatological threat for flash floods.

Full access
Harold E. Brooks
and
Robert B. Wilhelmson

Abstract

A set of numerical simulations of supercell thunderstorms has been carried out with a range of low-level curvatures in the environmental hodograph and midlevel shears. They cover a range of hodograph “shape,” as measured by the integrated helicity of the lowest 3 km of the hodograph. The peak updraft occurs in the first hour of the storms and tends to be greater for larger values of environmental helicity. There is also a slight tendency for greater updraft intensity with lesser values of midlevel shear. Significantly, air in the core of the updrafts at midlevels (∼5 km) is not the most unstable air at the level. The most buoyant air rises in a region with a downward-directed pressure gradient force, which slows its ascent. Conversely, pressure gradient forces at lower levels (2–3 km) accelerate less buoyant air upward into the core of the midlevel updrafts. The pressure gradient force is larger in the cases with more curvature in the environmental wind than the low-curvature environments. This is consistent with predictions of the pressure gradient force derived from a simple Beltrami flow model of a rotating thunderstorm and a scale analysis.

Full access
Robert J. Trapp
and
Harold E. Brooks

Abstract

In the United States, tornado activity of a given year is usually assessed in terms of the total number of human-reported tornadoes. Such assessments fail to account for the seldom-acknowledged fact that an active (or inactive) tornado year for the United States does not necessarily equate with activity (or inactivity) everywhere in the country. The authors illustrate this by comparing the geospatial tornado distributions from 1987, 2004, and 2011. Quantified in terms of the frequency of daily tornado occurrence (or “tornado days”), the high activity in the South Atlantic and upper Midwest regions was a major contributor to the record-setting number of tornadoes in 2004. The high activity in 2011 arose from significant tornado occurrences in the Southeast and lower Midwest. The authors also show that the uniqueness of the activity during these years can be determined by modeling the local statistical behavior of tornado days by a gamma distribution.

Full access
Alexandra K. Anderson-Frey
and
Harold Brooks

Abstract

In any discussion of forecast evaluation, it is tempting to fall back on statements reflecting unverified assumptions: “this tornado warning had lower skill because the underlying meteorology reflected a complicated or atypical scenario,” or “that forecast performed worse than we would have expected given the straightforward setup.” These statements of what is and is not a reasonable expectation for warning skill are particularly relevant as the meteorological community’s focus has begun to emphasize non-classic storm environments (e.g., tornadoes spawned by quasi-linear convective systems). In this paper, we build a proof-of-concept methodology to quantify the effect of the near-storm environment on tornado warning skill, and we then test these methods on a 15-yr dataset composed of tens of thousands of tornado events and warnings over the contiguous United States. Our findings include that significant tornadoes rated (E)F2+ have a higher probability of detection (POD) than expected based on their near-storm environments, that nocturnal tornadoes have both worse POD and false alarm ratio (FAR) than even their marginal near-storm environments would suggest, and that tornadoes occurring during the summer months also show worse POD and FAR than their environment-based expectation. Quantifying these shifts in performance in an environmental skill score framework allows us to target the situations in which the greatest improvements may be possible, in terms of forecaster training and/or conceptual models. This work also highlights the essential question that should always be asked in the context of forecast verification: what, exactly, is the baseline standard to which we are comparing forecast performance?

Full access
Michael K. Lindell
and
Harold Brooks
Full access
Patrick T. Marsh
and
Harold E. Brooks

No abstract available.

Full access
Mateusz Taszarek
and
Harold E. Brooks

Abstract

Very few studies on the occurrence of tornadoes in Poland have been performed and, therefore, their temporal and spatial variability have not been well understood. This article describes an updated climatology of tornadoes in Poland and the major problems related to the database. In this study, the results of an investigation of tornado occurrence in a 100-yr historical record (1899–1998) and a more recent 15-yr observational dataset (1999–2013) are presented. A total of 269 tornado cases derived from the European Severe Weather Database are used in the analysis. The cases are divided according to their strength on the F scale with weak tornadoes (unrated/F0/F1; 169 cases), significant tornadoes (F2/F3/F4; 66 cases), and waterspouts (34 cases). The tornado season extends from May to September (84% of all cases) with the seasonal peak for tornadoes occurring over land in July (23% of all land cases) and waterspouts in August (50% of all waterspouts). On average 8–14 tornadoes (including 2–3 waterspouts) with 2 strong tornadoes occur each year and 1 violent one occurs every 12–19 years. The maximum daily probability for weak and significant tornadoes occurs between 1500 and 1800 UTC while it occurs between 0900 and 1200 UTC for waterspouts. Tornadoes over land are most likely to occur in the south-central part of the country known as the “Polish Tornado Alley.” Cases of strong, and even violent, tornadoes that caused deaths indicate that the possibility of a large-fatality tornado in Poland cannot be ignored.

Full access
David J. Stensrud
and
Harold E. Brooks
Full access