Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Helena Barbieri de Azevedo x
  • All content x
Clear All Modify Search
Helena Barbieri de Azevedo, Luis Gustavo Gonçalves de Gonçalves, Carlos Frederico Bastarz, and Bruna Barbosa Silveira


The Center for Weather Forecast and Climate Studies [Centro de Previsão e Tempo e Estudos Climáticos (CPTEC)] at the Brazilian National Institute for Space Research [Instituto Nacional de Pesquisas Espaciais (INPE)] has recently operationally implemented a three-dimensional variational data assimilation (3DVAR) scheme based on the Gridpoint Statistical Interpolation analysis system (GSI). Implementation of the GSI system within the atmospheric global circulation model from CPTEC/INPE (AGCM-CPTEC/INPE) is hereafter referred to as the Global 3DVAR (G3DVAR) system. The results of an observing system experiment (OSE) measuring the impacts of radiosonde, satellite radiance, and GPS radio occultation (RO) data on the new G3DVAR system are presented here. The observational impact of each of these platforms was evaluated by measuring the degradation of the geopotential height anomaly correlation and the amplification of the RMSE of the wind. Losing the radiosonde, GPS RO, and satellite radiance data in the OSE resulted in negative impacts on the geopotential height anomaly correlations globally. Nevertheless, the strongest impacts were found over the Southern Hemisphere and South America when satellite radiance data were withheld from the data assimilation system.

Full access