Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Heli Wei x
  • All content x
Clear All Modify Search
Xiuhong Chen, Xianglei Huang, Norman G. Loeb, and Heli Wei

Abstract

The far-IR spectrum plays an important role in the earth’s radiation budget and remote sensing. The authors compare the near-global (80°S–80°N) outgoing clear-sky far-IR flux inferred from the collocated Atmospheric Infrared Sounder (AIRS) and Clouds and the Earth’s Radiant Energy System (CERES) observations in 2004 with the counterparts computed from reanalysis datasets subsampled along the same satellite trajectories. The three most recent reanalyses are examined: the ECMWF Interim Re-Analysis (ERA-Interim), NASA Modern-Era Retrospective Analysis for Research and Application (MERRA), and NOAA/NCEP Climate Forecast System Reanalysis (CFSR). Following a previous study by X. Huang et al., clear-sky spectral angular distribution models (ADMs) are developed for five of the CERES land surface scene types as well as for the extratropical oceans. The outgoing longwave radiation (OLR) directly estimated from the AIRS radiances using the authors’ algorithm agrees well with the OLR in the collocated CERES Single Satellite Footprint (SSF) dataset. The daytime difference is 0.96 ±2.02 W m−2, and the nighttime difference is 0.86 ±1.61 W m−2. To a large extent, the far-IR flux derived in this way agrees with those directly computed from three reanalyses. The near-global averaged differences between reanalyses and observations tend to be slightly positive (0.66%–1.15%) over 0–400 cm−1 and slightly negative (−0.89% to −0.44%) over 400–600 cm−1. For all three reanalyses, the spatial distributions of such differences show the largest discrepancies over the high-elevation areas during the daytime but not during the nighttime, suggesting discrepancies in the diurnal variation of such areas among different datasets. The composite differences with respect to temperature or precipitable water suggest large discrepancies for cold and humid scenes.

Full access
Jun Li, Hung-Lung Huang, Chian-Yi Liu, Ping Yang, Timothy J. Schmit, Heli Wei, Elisabeth Weisz, Li Guan, and W. Paul Menzel

Abstract

The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the NASA Earth Observing System Aqua satellite enable global monitoring of the distribution of clouds during day and night. The MODIS is able to provide a high-spatial-resolution (1–5 km) cloud mask, cloud classification mask, cloud-phase mask, cloud-top pressure (CTP), and effective cloud amount during both the daytime and the nighttime, as well as cloud particle size (CPS) and cloud optical thickness (COT) at 0.55 μm during the daytime. The AIRS high-spectral-resolution measurements reveal cloud properties with coarser spatial resolution (13.5 km at nadir). Combined, MODIS and AIRS provide cloud microphysical properties during both the daytime and nighttime. A fast cloudy radiative transfer model for AIRS that accounts for cloud scattering and absorption is described in this paper. One-dimensional variational (1DVAR) and minimum-residual (MR) methods are used to retrieve the CPS and COT from AIRS longwave window region (790–970 cm−1 or 10.31–12.66 μm, and 1050–1130 cm−1 or 8.85–9.52 μm) cloudy radiance measurements. In both 1DVAR and MR procedures, the CTP is derived from the AIRS radiances of carbon dioxide channels while the cloud-phase information is derived from the collocated MODIS 1-km phase mask for AIRS CPS and COT retrievals. In addition, the collocated 1-km MODIS cloud mask refines the AIRS cloud detection in both 1DVAR and MR procedures. The atmospheric temperature profile, moisture profile, and surface skin temperature used in the AIRS cloud retrieval processing are from the European Centre for Medium-Range Weather Forecasts forecast analysis. The results from 1DVAR are compared with the operational MODIS products and MR cloud microphysical property retrieval. A Hurricane Isabel case study shows that 1DVAR retrievals have a high correlation with either the operational MODIS cloud products or MR cloud property retrievals. 1DVAR provides an efficient way for cloud microphysical property retrieval during the daytime, and MR provides the cloud microphysical property retrievals during both the daytime and nighttime.

Full access