Search Results
You are looking at 1 - 10 of 10 items for
- Author or Editor: Hermann Gerber x
- Refine by Access: All Content x
Abstract
The ability of AgI particles to nucleate ice by the freezing mechanism was measured with the Goetz aerosol centrifuge as a function of particle size, temperature and time. When the cooled centrifuge deposit was exposed to a puff of supersaturated nitrogen, each particle was immersed in a supercooled droplet which, if it contained an active AgI particle, froze and formed a visible ice crystal. The fraction of active particles was found by comparing the number of ice crystals with the size distribution of all the particles on the deposit.
The mean nucleation rate per particle depended on particle size for a given temperature, which suggested that the surface of the particles was smooth with respect to the size of the critical ice embryos. The measured rates were about a factor of 1014 ± 16 smaller than predicted by Fletcher's theory. Activity spectra, calculated from the measured rates by numerically integrating the activities of all the particles in log-normal size distributions, showed the importance of the nucleation time lag at temperatures warmer than about −12°C or when the AgI generator produces very small particles.
Abstract
The ability of AgI particles to nucleate ice by the freezing mechanism was measured with the Goetz aerosol centrifuge as a function of particle size, temperature and time. When the cooled centrifuge deposit was exposed to a puff of supersaturated nitrogen, each particle was immersed in a supercooled droplet which, if it contained an active AgI particle, froze and formed a visible ice crystal. The fraction of active particles was found by comparing the number of ice crystals with the size distribution of all the particles on the deposit.
The mean nucleation rate per particle depended on particle size for a given temperature, which suggested that the surface of the particles was smooth with respect to the size of the critical ice embryos. The measured rates were about a factor of 1014 ± 16 smaller than predicted by Fletcher's theory. Activity spectra, calculated from the measured rates by numerically integrating the activities of all the particles in log-normal size distributions, showed the importance of the nucleation time lag at temperatures warmer than about −12°C or when the AgI generator produces very small particles.
Abstract
No abstract available.
Abstract
No abstract available.
The amount of light absorbed by aerosol particles has not been determined with certainty because errors in measurement techniques have been difficult to quantify. To improve this situation, a workshop was conducted to establish experimentally the errors for the various techniques. The workshop was held between 28 July and 8 August 1980 at the Cloud Simulation and Aerosol Laboratory at Colorado State University. Preliminary results show that, for the same well-characterized aerosol particles, substantial differences exist between results from the various techniques. These differences can explain a fraction of the variations reported for the light absorption properties of similar types of atmospheric aerosol particles.
The amount of light absorbed by aerosol particles has not been determined with certainty because errors in measurement techniques have been difficult to quantify. To improve this situation, a workshop was conducted to establish experimentally the errors for the various techniques. The workshop was held between 28 July and 8 August 1980 at the Cloud Simulation and Aerosol Laboratory at Colorado State University. Preliminary results show that, for the same well-characterized aerosol particles, substantial differences exist between results from the various techniques. These differences can explain a fraction of the variations reported for the light absorption properties of similar types of atmospheric aerosol particles.
Abstract
No abstract available.
Abstract
No abstract available.
Abstract
The Goetz Aerosol Spectrometer, generally considered to possess only a fair ability in resolving size distributions of polydispersed aerosols, operates properly following a modification to the geometry of the entrance to the instrument's deposition channels. Its accuracy is demonstrated with an electron microscopic evaluation of a collecting surface deposit of a thermally produced polydispersed AgI aerosol with particle sizes ranging from 60 to 1000Å In diameter.
Thus calibrated, the instrument was utilized to investigate the activity of the same aerosol as freezing nuclei. The AgI particles on the hydrophobic chrome-plated collecting foil were nucleated by sorption at water saturation for temperatures of −15 and −20C. The results appear to reflect the influence of the Kelvin effect since the activity decreased at a faster rate than predicted by the “surface area rare” and since it showed a sharp cutoff corresponding to Fletcher's theoretical size temperature predictions for ideal sublimation nuclei.
Also, field measurements were conducted on 12,000-ft Chalk Mountain (Climax, Colo.) for the purpose of measuring the sizes of active AgI-NaI nuclei emanating from acetone ground generators located at least 6 mi upwind. The size distribution of the nuclei on seeding days proved similar to what might he expected from this generator type. On non-seeding days, the number of active nuclei decreased sharply while the peak of the size distributions shifted to larger sizes.
Abstract
The Goetz Aerosol Spectrometer, generally considered to possess only a fair ability in resolving size distributions of polydispersed aerosols, operates properly following a modification to the geometry of the entrance to the instrument's deposition channels. Its accuracy is demonstrated with an electron microscopic evaluation of a collecting surface deposit of a thermally produced polydispersed AgI aerosol with particle sizes ranging from 60 to 1000Å In diameter.
Thus calibrated, the instrument was utilized to investigate the activity of the same aerosol as freezing nuclei. The AgI particles on the hydrophobic chrome-plated collecting foil were nucleated by sorption at water saturation for temperatures of −15 and −20C. The results appear to reflect the influence of the Kelvin effect since the activity decreased at a faster rate than predicted by the “surface area rare” and since it showed a sharp cutoff corresponding to Fletcher's theoretical size temperature predictions for ideal sublimation nuclei.
Also, field measurements were conducted on 12,000-ft Chalk Mountain (Climax, Colo.) for the purpose of measuring the sizes of active AgI-NaI nuclei emanating from acetone ground generators located at least 6 mi upwind. The size distribution of the nuclei on seeding days proved similar to what might he expected from this generator type. On non-seeding days, the number of active nuclei decreased sharply while the peak of the size distributions shifted to larger sizes.
Abstract
The authors have analyzed the scaling behavior of marine boundary layer (MBL) clouds using high-resolution temperature (T) and liquid water content (LWC) fluctuations from aircraft measurements collected over the Pacific Ocean during the Physics of Stratocumulus Top (POST) research campaign in summer of 2008. As an extension of the past studies for scale-invariant properties of MBL clouds, the authors studied the variability of scaling exponents with height. The results showed that both LWC and T have two distinct scaling regimes: the first one displays scale invariance over a range from about 1–5 m to at least 7 km, and the second one goes from about 0.1–1 to 1–5 m. For the large-scale regime (r > 1–5 m), turbulence in MBL clouds is multifractal, while scale break and scaling exponents vary with height, most significantly in the cloud-top region. For example, LWC spectral exponent β increases from 1.42 at cloud base to 1.58 at cloud top, while scale break decreases from ~5 m at cloud base to 0.8 m at cloud top. The bifractal parameters (H 1, C 1) for LWC increase from (0.14, 0.02) at cloud base to (0.33, 0.1) at cloud top while maintaining a statistically significant linear relationship C 1 ≈ 0.4H 1 − 0.04 in MBL clouds. From near surface to cloud top, (H 1, C 1) for T also increase with height, but above cloud top H 1 increases and C 1 decreases with height. The results suggest the existence of three turbulence regimes: near the surface, in the middle of the boundary layer, and in the cloud-top region, which need to be distinguished.
Abstract
The authors have analyzed the scaling behavior of marine boundary layer (MBL) clouds using high-resolution temperature (T) and liquid water content (LWC) fluctuations from aircraft measurements collected over the Pacific Ocean during the Physics of Stratocumulus Top (POST) research campaign in summer of 2008. As an extension of the past studies for scale-invariant properties of MBL clouds, the authors studied the variability of scaling exponents with height. The results showed that both LWC and T have two distinct scaling regimes: the first one displays scale invariance over a range from about 1–5 m to at least 7 km, and the second one goes from about 0.1–1 to 1–5 m. For the large-scale regime (r > 1–5 m), turbulence in MBL clouds is multifractal, while scale break and scaling exponents vary with height, most significantly in the cloud-top region. For example, LWC spectral exponent β increases from 1.42 at cloud base to 1.58 at cloud top, while scale break decreases from ~5 m at cloud base to 0.8 m at cloud top. The bifractal parameters (H 1, C 1) for LWC increase from (0.14, 0.02) at cloud base to (0.33, 0.1) at cloud top while maintaining a statistically significant linear relationship C 1 ≈ 0.4H 1 − 0.04 in MBL clouds. From near surface to cloud top, (H 1, C 1) for T also increase with height, but above cloud top H 1 increases and C 1 decreases with height. The results suggest the existence of three turbulence regimes: near the surface, in the middle of the boundary layer, and in the cloud-top region, which need to be distinguished.
Abstract
This study uses a unique set of microphysical measurements obtained in a vigorous, convective updraft core at temperatures between −33° and −36°C, together with a microphysical model, to investigate the role of homogeneous ice nucleation in deep tropical convection and how it influences the microphysical properties of the associated cirrus anvils. The core and anvil formed along a sea-breeze front during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida Area Cirrus Experiment (CRYSTAL–FACE).
The updraft core contained two distinct regions as traversed horizontally: the upwind portion of the core contained droplets of diameter 10–20 μm in concentrations of around 100 cm−3 with updraft speeds of 5–10 m s−1; the downwind portion of the core was glaciated with high concentrations of small ice particles and stronger updrafts of 10–20 m s−1. Throughout the core, rimed particles up to 0.6-cm diameter were observed. The anvil contained high concentrations of both small particles and large aggregates.
Thermodynamic analysis suggests that the air sampled in the updraft core was mixed with air from higher altitudes that descended along the upwind edge of the cloud in an evaporatively driven downdraft, introducing free-tropospheric cloud condensation nuclei into the updraft below the aircraft sampling height. Farther downwind in the glaciated portion of the core, the entrained air contained high concentrations of ice particles that inhibit droplet formation and homogeneous nucleation.
Calculations of droplet and ice particle growth and homogeneous ice nucleation are used to investigate the influence of large ice particles lofted in updrafts from lower levels in this and previously studied tropical ice clouds on the homogeneous nucleation process. The preexisting large ice particles act to suppress homogeneous nucleation through competition via diffusional and accretional growth, mainly when the updrafts are < 5 m s−1. In deep convective updrafts > 5–10 m s−1, the anvil is the depository for the small, radiatively important ice particles (homogeneously nucleated) and the large ice particles from below (heterogeneously or secondarily produced, or recycled).
Abstract
This study uses a unique set of microphysical measurements obtained in a vigorous, convective updraft core at temperatures between −33° and −36°C, together with a microphysical model, to investigate the role of homogeneous ice nucleation in deep tropical convection and how it influences the microphysical properties of the associated cirrus anvils. The core and anvil formed along a sea-breeze front during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida Area Cirrus Experiment (CRYSTAL–FACE).
The updraft core contained two distinct regions as traversed horizontally: the upwind portion of the core contained droplets of diameter 10–20 μm in concentrations of around 100 cm−3 with updraft speeds of 5–10 m s−1; the downwind portion of the core was glaciated with high concentrations of small ice particles and stronger updrafts of 10–20 m s−1. Throughout the core, rimed particles up to 0.6-cm diameter were observed. The anvil contained high concentrations of both small particles and large aggregates.
Thermodynamic analysis suggests that the air sampled in the updraft core was mixed with air from higher altitudes that descended along the upwind edge of the cloud in an evaporatively driven downdraft, introducing free-tropospheric cloud condensation nuclei into the updraft below the aircraft sampling height. Farther downwind in the glaciated portion of the core, the entrained air contained high concentrations of ice particles that inhibit droplet formation and homogeneous nucleation.
Calculations of droplet and ice particle growth and homogeneous ice nucleation are used to investigate the influence of large ice particles lofted in updrafts from lower levels in this and previously studied tropical ice clouds on the homogeneous nucleation process. The preexisting large ice particles act to suppress homogeneous nucleation through competition via diffusional and accretional growth, mainly when the updrafts are < 5 m s−1. In deep convective updrafts > 5–10 m s−1, the anvil is the depository for the small, radiatively important ice particles (homogeneously nucleated) and the large ice particles from below (heterogeneously or secondarily produced, or recycled).
Abstract
Fast measurements of three scalars, ozone, dimethyl sulfide (DMS), and total water, are used to investigate the entrainment process in the stratocumulus-topped boundary layer (STBL) observed over the eastern subtropical Pacific during the second Dynamics and Chemistry of Marine Stratocumulus Experiment (DYCOMS-II). Direct measurement of the flux profiles by eddy covariance is used to estimate the entrainment velocity, the average rate at which the boundary layer grows diabatically via incorporation of overlying free tropospheric air. The entrainment velocities observed over the course of the mission, which took place during July 2001, ranged from 0.12 to 0.72 cm s−1, and appear to outpace the estimated large-scale subsidence as the boundary layer advects over warmer sea surface temperatures. Observed entrainment velocities display only a weak correlation with the buoyancy Richardson number defined at the inversion, which suggests that processes other than inversion strength, such as wind shear, might play a larger role in driving entrainment in the STBL than previously recognized.
This study is the first to use DMS as an entrainment tracer because the high-rate mass spectrometric technique has only recently been developed. The biogenic sulfur compound shows great promise for such investigations in marine environments because the free tropospheric concentrations are virtually nonexistent, and it therefore serves as an unambiguous marker of boundary layer air. As such, individual mixing events can be analyzed to determine the mixing fraction of boundary layer and free tropospheric air, and in several such cases buoyancy reversal was observed despite the absence of large-scale dissipation of the cloud field as postulated by cloud-top entrainment instability. Moreover, the redundancy attained in using three separate scalars allows for an investigation of the average height scales above the inversion from where air is blended into the STBL, and this tends to be less than 80 m above the mean inversion height, implying that the entrainment process occurs on very small scales.
Abstract
Fast measurements of three scalars, ozone, dimethyl sulfide (DMS), and total water, are used to investigate the entrainment process in the stratocumulus-topped boundary layer (STBL) observed over the eastern subtropical Pacific during the second Dynamics and Chemistry of Marine Stratocumulus Experiment (DYCOMS-II). Direct measurement of the flux profiles by eddy covariance is used to estimate the entrainment velocity, the average rate at which the boundary layer grows diabatically via incorporation of overlying free tropospheric air. The entrainment velocities observed over the course of the mission, which took place during July 2001, ranged from 0.12 to 0.72 cm s−1, and appear to outpace the estimated large-scale subsidence as the boundary layer advects over warmer sea surface temperatures. Observed entrainment velocities display only a weak correlation with the buoyancy Richardson number defined at the inversion, which suggests that processes other than inversion strength, such as wind shear, might play a larger role in driving entrainment in the STBL than previously recognized.
This study is the first to use DMS as an entrainment tracer because the high-rate mass spectrometric technique has only recently been developed. The biogenic sulfur compound shows great promise for such investigations in marine environments because the free tropospheric concentrations are virtually nonexistent, and it therefore serves as an unambiguous marker of boundary layer air. As such, individual mixing events can be analyzed to determine the mixing fraction of boundary layer and free tropospheric air, and in several such cases buoyancy reversal was observed despite the absence of large-scale dissipation of the cloud field as postulated by cloud-top entrainment instability. Moreover, the redundancy attained in using three separate scalars allows for an investigation of the average height scales above the inversion from where air is blended into the STBL, and this tends to be less than 80 m above the mean inversion height, implying that the entrainment process occurs on very small scales.
The second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field study is described. The field program consisted of nine flights in marine stratocumulus west-southwest of San Diego, California. The objective of the program was to better understand the physics a n d dynamics of marine stratocumulus. Toward this end special flight strategies, including predominantly nocturnal flights, were employed to optimize estimates of entrainment velocities at cloud-top, large-scale divergence within the boundary layer, drizzle processes in the cloud, cloud microstructure, and aerosol–cloud interactions. Cloud conditions during DYCOMS-II were excellent with almost every flight having uniformly overcast clouds topping a well-mixed boundary layer. Although the emphasis of the manuscript is on the goals and methodologies of DYCOMS-II, some preliminary findings are also presented—the most significant being that the cloud layers appear to entrain less and drizzle more than previous theoretical work led investigators to expect.
The second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field study is described. The field program consisted of nine flights in marine stratocumulus west-southwest of San Diego, California. The objective of the program was to better understand the physics a n d dynamics of marine stratocumulus. Toward this end special flight strategies, including predominantly nocturnal flights, were employed to optimize estimates of entrainment velocities at cloud-top, large-scale divergence within the boundary layer, drizzle processes in the cloud, cloud microstructure, and aerosol–cloud interactions. Cloud conditions during DYCOMS-II were excellent with almost every flight having uniformly overcast clouds topping a well-mixed boundary layer. Although the emphasis of the manuscript is on the goals and methodologies of DYCOMS-II, some preliminary findings are also presented—the most significant being that the cloud layers appear to entrain less and drizzle more than previous theoretical work led investigators to expect.
A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in situ statistical characterization of continental boundary layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign operated over the ARM Southern Great Plains (SGP) site from 22 January to 30 June 2009, collecting 260 h of data during 59 research flights. A comprehensive payload aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft measured cloud microphysics, solar and thermal radiation, physical aerosol properties, and atmospheric state parameters. Proximity to the SGP's extensive complement of surface measurements provides ancillary data that support modeling studies and facilitates evaluation of a variety of surface retrieval algorithms. The five-month duration enabled sampling a range of conditions associated with the seasonal transition from winter to summer. Although about twothirds of the flights during which clouds were sampled occurred in May and June, boundary layer cloud fields were sampled under a variety of environmental and aerosol conditions, with about 77% of the cloud flights occurring in cumulus and stratocumulus. Preliminary analyses illustrate use of these data to analyze aerosol– cloud relationships, characterize the horizontal variability of cloud radiative impacts, and evaluate surface-based retrievals. We discuss how an extended-term campaign requires a simplified operating paradigm that is different from that used for typical, short-term, intensive aircraft field programs.
A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in situ statistical characterization of continental boundary layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign operated over the ARM Southern Great Plains (SGP) site from 22 January to 30 June 2009, collecting 260 h of data during 59 research flights. A comprehensive payload aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft measured cloud microphysics, solar and thermal radiation, physical aerosol properties, and atmospheric state parameters. Proximity to the SGP's extensive complement of surface measurements provides ancillary data that support modeling studies and facilitates evaluation of a variety of surface retrieval algorithms. The five-month duration enabled sampling a range of conditions associated with the seasonal transition from winter to summer. Although about twothirds of the flights during which clouds were sampled occurred in May and June, boundary layer cloud fields were sampled under a variety of environmental and aerosol conditions, with about 77% of the cloud flights occurring in cumulus and stratocumulus. Preliminary analyses illustrate use of these data to analyze aerosol– cloud relationships, characterize the horizontal variability of cloud radiative impacts, and evaluate surface-based retrievals. We discuss how an extended-term campaign requires a simplified operating paradigm that is different from that used for typical, short-term, intensive aircraft field programs.