Search Results
You are looking at 1 - 6 of 6 items for
- Author or Editor: Hironari Kanamori x
- Refine by Access: All Content x
Abstract
This study investigates spatiotemporal characteristics of the diurnal cycle (DC) of rainfall over Sarawak in northwest Borneo Island, associated with large-scale intraseasonal disturbances represented by the Madden–Julian oscillation (MJO). This is accomplished using a dense hourly rain gauge network and satellite data. The spatial pattern of the DC is classified into two major groups, coastal and interior regions, based on remarkable differences in rainfall peak times and amplitudes. Amplitudes of the DC and daily rainfall amount increase in active MJO phases at all sites, but the MJO has a stronger effect in the coastal region than the interior region. This modulation of rainfall by the MJO disturbance is largely attributed to rainfall frequency in the interior region, but to both frequency and intensity of rainfall in the coastal region. The low-level westerly wind anomaly enhances convergence, the land–sea breeze, and a midnight rainfall peak in the coastal region during the active MJO phase. Analysis of moisture flux divergence and moist static instability suggests the different dynamics of this modulation of the DC between coastal and interior regions.
Abstract
This study investigates spatiotemporal characteristics of the diurnal cycle (DC) of rainfall over Sarawak in northwest Borneo Island, associated with large-scale intraseasonal disturbances represented by the Madden–Julian oscillation (MJO). This is accomplished using a dense hourly rain gauge network and satellite data. The spatial pattern of the DC is classified into two major groups, coastal and interior regions, based on remarkable differences in rainfall peak times and amplitudes. Amplitudes of the DC and daily rainfall amount increase in active MJO phases at all sites, but the MJO has a stronger effect in the coastal region than the interior region. This modulation of rainfall by the MJO disturbance is largely attributed to rainfall frequency in the interior region, but to both frequency and intensity of rainfall in the coastal region. The low-level westerly wind anomaly enhances convergence, the land–sea breeze, and a midnight rainfall peak in the coastal region during the active MJO phase. Analysis of moisture flux divergence and moist static instability suggests the different dynamics of this modulation of the DC between coastal and interior regions.
Abstract
This study investigated atmospheric water cycles over several time scales to understand the maintenance processes that control heavy precipitation over the islands of the Maritime Continent. Large island regions can be divided into land, coastal, and ocean areas based on the characteristics of both the hydrologic cycle and the diurnal variation in precipitation. Within the Maritime Continent, the major islands of Borneo and New Guinea exhibit different hydrologic cycles. Large-scale circulation variations, such as the seasonal cycle and the Madden–Julian oscillation, have a lesser effect on the hydrologic cycle over Borneo than over New Guinea because the effects depend on their shapes and locations. The impact of diurnal variations on both regional-scale circulation and water exchange between land and coastal regions is pronounced over both islands. The recycling ratio of precipitation, which can be related to stronger diurnal variation in the atmospheric water cycle that results from enhanced evapotranspiration over tropical rain forests, is higher over Borneo than over New Guinea.
Abstract
This study investigated atmospheric water cycles over several time scales to understand the maintenance processes that control heavy precipitation over the islands of the Maritime Continent. Large island regions can be divided into land, coastal, and ocean areas based on the characteristics of both the hydrologic cycle and the diurnal variation in precipitation. Within the Maritime Continent, the major islands of Borneo and New Guinea exhibit different hydrologic cycles. Large-scale circulation variations, such as the seasonal cycle and the Madden–Julian oscillation, have a lesser effect on the hydrologic cycle over Borneo than over New Guinea because the effects depend on their shapes and locations. The impact of diurnal variations on both regional-scale circulation and water exchange between land and coastal regions is pronounced over both islands. The recycling ratio of precipitation, which can be related to stronger diurnal variation in the atmospheric water cycle that results from enhanced evapotranspiration over tropical rain forests, is higher over Borneo than over New Guinea.
Abstract
Convective self-aggregation is among the most striking features emerging from radiative–convective equilibrium simulations, but its relevance to convective disturbances observed in the real atmosphere remains under debate. This work seeks the observational signals of convective aggregation intrinsic to the life cycle of cloud clusters. To this end, composite time series of the Simple Convective Aggregation Index (SCAI), a metric of aggregation, and other variables from satellite measurements are constructed around the temporal maxima of precipitation. All the parameters analyzed are large-scale means over 10° × 10° domains. The composite evolution for heavy precipitation regimes shows that cloud clusters are gathered into fewer members during a period of ±12 h as precipitation picks up. The high-cloud cover per cluster expands as the number of clusters drops, suggesting a transient occurrence of convective aggregation. The sign of the transient aggregation is less evident or entirely absent in light precipitation regimes. An energy budget analysis is performed in search of the physical processes underlying the transient aggregation. The column moist static energy (MSE) accumulates before the precipitation peak and dissipates after, accounted for primarily by the horizontal MSE advection. The domain-averaged column radiative cooling is greater in a more aggregated composite than in a less aggregated one, although the role of radiative–convective feedback behind this remains unclear.
Abstract
Convective self-aggregation is among the most striking features emerging from radiative–convective equilibrium simulations, but its relevance to convective disturbances observed in the real atmosphere remains under debate. This work seeks the observational signals of convective aggregation intrinsic to the life cycle of cloud clusters. To this end, composite time series of the Simple Convective Aggregation Index (SCAI), a metric of aggregation, and other variables from satellite measurements are constructed around the temporal maxima of precipitation. All the parameters analyzed are large-scale means over 10° × 10° domains. The composite evolution for heavy precipitation regimes shows that cloud clusters are gathered into fewer members during a period of ±12 h as precipitation picks up. The high-cloud cover per cluster expands as the number of clusters drops, suggesting a transient occurrence of convective aggregation. The sign of the transient aggregation is less evident or entirely absent in light precipitation regimes. An energy budget analysis is performed in search of the physical processes underlying the transient aggregation. The column moist static energy (MSE) accumulates before the precipitation peak and dissipates after, accounted for primarily by the horizontal MSE advection. The domain-averaged column radiative cooling is greater in a more aggregated composite than in a less aggregated one, although the role of radiative–convective feedback behind this remains unclear.
Abstract
Southeast Asian tropical rain forests in the Maritime Continent are among the most important biomes in terms of global and regional water cycling. How land use and land cover change (LULCC) relating to deforestation and forest degradation alter the local hydroclimate over the island of Borneo is examined using the Weather Research and Forecasting (WRF) Model with an appropriate land surface model for describing the influence of changes in the vegetation status on the atmosphere. The model was validated against precipitation data from Tropical Rainfall Measuring Mission (TRMM) satellite 3B42 measurements. A main novelty in this analysis is that the diurnal cycle of precipitation over the island, which is a dominant climatic characteristic of the Maritime Continent, was successfully reproduced. To clarify the impact of the LULCC on the precipitation regimes over the island, numerical experiments were performed with the model that demonstrated the following. Deforestation that generates high albedo areas, such as bare lands, would induce a reduction in precipitation because of reductions in evapotranspiration, convection, and horizontal atmospheric moisture inflow. On the other hand, a decrease in evapotranspiration efficiency without changing the surface albedo could increase precipitation due to an increase in convection and horizontal atmospheric moisture inflow in compensation for the decrease in evapotranspiration. In detail, on the Maritime Continent, through changes in the land surface heating process and land–sea breeze circulation, the LULCC would impact the amplitude of the diurnal precipitation cycle in each region as defined according to the distance from the coast, resulting in changes in the precipitation regimes over the island.
Abstract
Southeast Asian tropical rain forests in the Maritime Continent are among the most important biomes in terms of global and regional water cycling. How land use and land cover change (LULCC) relating to deforestation and forest degradation alter the local hydroclimate over the island of Borneo is examined using the Weather Research and Forecasting (WRF) Model with an appropriate land surface model for describing the influence of changes in the vegetation status on the atmosphere. The model was validated against precipitation data from Tropical Rainfall Measuring Mission (TRMM) satellite 3B42 measurements. A main novelty in this analysis is that the diurnal cycle of precipitation over the island, which is a dominant climatic characteristic of the Maritime Continent, was successfully reproduced. To clarify the impact of the LULCC on the precipitation regimes over the island, numerical experiments were performed with the model that demonstrated the following. Deforestation that generates high albedo areas, such as bare lands, would induce a reduction in precipitation because of reductions in evapotranspiration, convection, and horizontal atmospheric moisture inflow. On the other hand, a decrease in evapotranspiration efficiency without changing the surface albedo could increase precipitation due to an increase in convection and horizontal atmospheric moisture inflow in compensation for the decrease in evapotranspiration. In detail, on the Maritime Continent, through changes in the land surface heating process and land–sea breeze circulation, the LULCC would impact the amplitude of the diurnal precipitation cycle in each region as defined according to the distance from the coast, resulting in changes in the precipitation regimes over the island.
Abstract
The processes underlying heavy rainfall in the higher elevations of the Himalayas are still not well known despite their importance. Here, we examine the detailed process causing a heavy rainfall event, observed by our rain gauge network in the Rolwaling valley, eastern Nepal Himalayas, using ERA5 and a regional cloud-resolving numerical simulation. Heavy precipitation (112 mm day−1) was observed on 8 July 2019 at Dongang (2790 m above sea level). Most of the precipitation (81 mm) occurred during 1900–2300 local time (LT). The synoptic-scale environment is characterized by a monsoon low pressure system (LPS) over northeastern India. The LPS lifted moisture upward from the lower troposphere and then horizontally transported it into the eastern Nepal Himalayas within the middle troposphere, increasing the content of the water vapor around Dongang. A mesoscale convective system passed over Dongang around the time of the intense precipitation. The numerical simulation showed that surface heat fluxes prevailed under the middle tropospheric (∼500 hPa) southeasterly flow associated with the LPS around a mountain ridge on the upwind side of Dongang until 1900 LT, enhancing convective instability. Topographic lifting led to the release of the enhanced instability, which triggered the development of a mesoscale precipitation system. The southeasterly flow pushed the precipitation system northward, which then passed over Dongang during 2000–2200 LT, resulting in heavy precipitation. Thus, we conclude that the heavy precipitation came from the multiscale processes such as three-dimensional moisture transport driven by the LPS and the diurnal variation in heat fluxes from the land surface.
Significance Statement
Precipitation in the Himalayas is closely related to the hydrological cycle, floods, and landslide disasters in South Asia. Thus, elucidating the features of precipitation in the Himalayas is important. This study explored multiscale processes leading to a heavy precipitation event that was observed on 8 July 2019 at Dongang in the Rolwaling valley of the eastern Nepal Himalayas. We identified new processes producing heavy precipitation in the Himalayas: the three-dimensional synoptic-scale moisture transport driven by a monsoon low pressure system and the effect of the diurnal variation in heat fluxes from the land surface on the development and movement of a mesoscale precipitation system causing heavy precipitation. These findings broaden our understanding of heavy precipitation in the Himalayas.
Abstract
The processes underlying heavy rainfall in the higher elevations of the Himalayas are still not well known despite their importance. Here, we examine the detailed process causing a heavy rainfall event, observed by our rain gauge network in the Rolwaling valley, eastern Nepal Himalayas, using ERA5 and a regional cloud-resolving numerical simulation. Heavy precipitation (112 mm day−1) was observed on 8 July 2019 at Dongang (2790 m above sea level). Most of the precipitation (81 mm) occurred during 1900–2300 local time (LT). The synoptic-scale environment is characterized by a monsoon low pressure system (LPS) over northeastern India. The LPS lifted moisture upward from the lower troposphere and then horizontally transported it into the eastern Nepal Himalayas within the middle troposphere, increasing the content of the water vapor around Dongang. A mesoscale convective system passed over Dongang around the time of the intense precipitation. The numerical simulation showed that surface heat fluxes prevailed under the middle tropospheric (∼500 hPa) southeasterly flow associated with the LPS around a mountain ridge on the upwind side of Dongang until 1900 LT, enhancing convective instability. Topographic lifting led to the release of the enhanced instability, which triggered the development of a mesoscale precipitation system. The southeasterly flow pushed the precipitation system northward, which then passed over Dongang during 2000–2200 LT, resulting in heavy precipitation. Thus, we conclude that the heavy precipitation came from the multiscale processes such as three-dimensional moisture transport driven by the LPS and the diurnal variation in heat fluxes from the land surface.
Significance Statement
Precipitation in the Himalayas is closely related to the hydrological cycle, floods, and landslide disasters in South Asia. Thus, elucidating the features of precipitation in the Himalayas is important. This study explored multiscale processes leading to a heavy precipitation event that was observed on 8 July 2019 at Dongang in the Rolwaling valley of the eastern Nepal Himalayas. We identified new processes producing heavy precipitation in the Himalayas: the three-dimensional synoptic-scale moisture transport driven by a monsoon low pressure system and the effect of the diurnal variation in heat fluxes from the land surface on the development and movement of a mesoscale precipitation system causing heavy precipitation. These findings broaden our understanding of heavy precipitation in the Himalayas.