Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: Hoon Park x
  • All content x
Clear All Modify Search
Sang-Hun Park, Joseph B. Klemp, and Jung-Hoon Kim

Abstract

Although a terrain-following vertical coordinate is well suited for the application of surface boundary conditions, it is well known that the influences of the terrain on the coordinate surfaces can contribute to increase numerical errors, particularly over steep topography. To reduce these errors, a hybrid sigma–pressure coordinate is formulated in the Weather Research and Forecasting (WRF) Model, and its effects are illustrated for both an idealized test case and a real-data forecast for upper-level turbulence. The idealized test case confirms that with the basic sigma coordinate, significant upper-level disturbances can be produced due to numerical errors that arise as the advection of strong horizontal flow is computed along coordinate surfaces that are perturbed by smaller-scale terrain influences. With the hybrid coordinate, this artificial noise is largely eliminated as the mid- and upper-level coordinate surfaces correspond much more closely to constant pressure surfaces. In real-data simulations for upper-level turbulence forecasting, the WRF Model using the basic sigma coordinate tends to overpredict the strength of upper-air turbulence over mountainous regions because of numerical errors arising as a strong upper-level jet is advected along irregular coordinate surfaces. With the hybrid coordinate, these errors are reduced, resulting in an improved forecast of upper-level turbulence. Analysis of kinetic energy spectra for these simulations confirms that artificial amplitudes in the smaller scales at upper levels that arise with the basic sigma coordinate are effectively removed when the hybrid coordinate is used.

Open access
Chanil Park, Seok-Woo Son, and Jung-Hoon Kim

Abstract

The nature of the vertical motion responsible for the summertime heavy rainfall events (HREs) in South Korea is quantitatively examined. By compositing 318 HREs from June to September in 1979–2018, it is found that the synoptic conditions of the HREs are typically characterized by a developing surface cyclone with a southwesterly low-level jet on its southeastern flank and an upper-level trough to the west of the HREs. This baroclinic environment allows for well-organized vertical motion over South Korea at the equatorward side of the upper-level jet entrance. The relative importance of dynamic and diabatic forcings in driving the vertical motion is further quantified by solving the quasigeostrophic omega equation. It turns out that the dynamic forcing, defined as Q-vector convergence, is comparable to the diabatic forcing in the developing stage of the HREs. The diabatic forcing, however, becomes more important in the mature stage as latent heating rapidly increases. The decomposition of the Q vector into the transverse (cross-isentropic) and shearwise (along-isentropic) components reveals that the dynamic uplift is largely caused by the shearwise Q-vector convergence, which is closely related to the developing trough in the upper to middle troposphere on the west of the HREs. This result indicates that the HREs in South Korea are organized by the baroclinic trough coupled to moist processes, with a minor contribution of the thermally direct secondary circulation at the entrance region of the upper-level jet.

Restricted access
Young-Hyang Park, Jong-Hwan Yoon, Yong-Hoon Youn, and Frédéric Vivier

Abstract

On the basis of a new East Asian winter monsoon (EAWM) index and by analyzing the relationship between sea surface temperature (SST) anomalies and different atmospheric and oceanic factors in winter, this study investigates the causes of the recent unusual warming in the western North Pacific Ocean. Analyses presented here emphasize the dual contribution from the atmosphere and ocean to the local SST variability, with the relative importance of each contributor varying with the period and place. During the period 1970–89, the EAWM, controlled mostly by the Siberian high, is predominantly responsible for the SST variability in most of the western North Pacific, whereas in the period 1990–2005 ocean dynamics become increasingly important in most places or even dominant in the Kuroshio–Oyasio Extension (KOE) region. The delayed response of the KOE SST to basinwide wind stress curl forcing via Rossby waves is epoch dependent and is significant at lags of 1, 3, and 4 yr before 1990 but only at 1 yr afterward. This epoch dependency of the impact of Rossby waves is related to the different locations of the centers of action of wind stress curl in the midlatitude North Pacific between the two epochs. In addition, mean advection of the EAWM-driven anomalous SST from the southern East China Sea, which can be transported into the KOE region in about a year by the Kuroshio, likely affects the KOE SST lagged by 1 yr. The strongest positive SST trend observed in the western North Pacific results from the combined effects of the abrupt weakening of the EAWM due to the unprecedented decline of the Siberian high and the increasing role of the ocean. The latter is best evidenced by the 1-yr delayed response of the western North Pacific via the gyre circulation adjustment to the basinwide decadal-scale wind stress curl change associated with the northward shift of the strengthened Aleutian low.

Full access
Hoon Park, Song-You Hong, Hyeong-Bin Cheong, and Myung-Seo Koo

Abstract

This study describes an application of the double Fourier series (DFS) spectral method developed by Cheong as an alternative dynamical option in a model system that was ported into the Global/Regional Integrated Model System (GRIMs). A message passing interface (MPI) for a massive parallel-processor cluster computer devised for the DFS dynamical core is also presented. The new dynamical core with full physics was evaluated against a conventional spherical harmonics (SPH) dynamical core in terms of short-range forecast capability for a heavy rainfall event and seasonal simulation framework. Comparison of the two dynamical cores demonstrates that the new DFS dynamical core exhibits performance comparable to the SPH in terms of simulated climatology accuracy and the forecast of a heavy rainfall event. Most importantly, the DFS algorithm guarantees improved computational efficiency in the cluster computer as the model resolution increases, which is consistent with theoretical values computed from a dry primitive equation model framework. The current study shows that, at higher resolutions, the DFS approach can be a competitive dynamical core because the DFS algorithm provides the advantages of both the spectral method for high numerical accuracy and the gridpoint method for high performance computing in the aspect of computational cost.

Full access
Song-You Hong, Jung Choi, Eun-Chul Chang, Hoon Park, and Young-Joon Kim

Abstract

The impacts of enhanced lower-tropospheric gravity wave drag induced by subgrid-scale orography on short- and medium-range forecasts as well as seasonal simulations are examined. This study reports on the enhanced performance of the scheme proposed by Kim and Arakawa, which has been used in the National Centers for Environmental Prediction (NCEP) Global Spectral Model since 1997. The performance is evaluated against a traditional upper-level drag scheme that is also available in the model. The experiment results reveal that the Kim–Arakawa scheme improves the movement and intensity of an extratropical cyclone and a continental high pressure system that was accompanied by heavy snowfall over Korea on 14–15 February 2001. The monthly verification for medium-range forecasts in December 2006, which are initialized by the NCEP operational analysis, demonstrates overall improvements in the forecasts of large-scale fields in the Northern Hemisphere. Moderate improvements are also found in the seasonal simulation of December–February for the years 1996/97, 1997/98, and 1999/2000. This study concludes that the enhanced lower-level drag should be properly parameterized in global atmospheric models for numerical weather prediction and seasonal prediction.

Full access
Jee-Hoon Jeong, Chang-Hoi Ho, Deliang Chen, and Tae-Won Park

Abstract

The impacts of initialized land surface conditions on the monthly prediction were investigated using ensemble simulations from the Community Atmosphere Model version 3 (CAM3). The land surface initialization was based on an offline calculation of Community Land Model version 3 driven by observation-based meteorological forcings from the Global Soil Wetness Project 2 (GSWP2). A simple but effective correction method was applied to the GSWP2 forcings prior to the offline calculation to reduce the discrepancies between the observation-forced land surface conditions and the modeling system, which can cause climate drift and initial shock problems. The climatological mean of GSWP2 forcings was adjusted to that of the target model (CAM3), while the monthly anomalies were scaled to the model statistics and high-frequency synoptic variabilities were included.

Ensemble hindcast experiments with and without land surface initialization were conducted for the boreal summer (May–September), for 1983–95. The initialization process is shown to prevent climate drift and to transfer the atmospheric anomalies to the land surface memory. Statistical analyses of the simulation results reveal that the land surface initialization increased the externally forced variance over most continental regions, which is translated to enhanced potential predictability, particularly for regions with strong land–atmosphere coupling.

Full access
Song-You Hong, Myung-Seo Koo, Jihyeon Jang, Jung-Eun Esther Kim, Hoon Park, Min-Su Joh, Ji-Hoon Kang, and Tae-Jin Oh

Abstract

This study presents the dependency of the simulation results from a global atmospheric numerical model on machines with different hardware and software systems. The global model program (GMP) of the Global/Regional Integrated Model system (GRIMs) is tested on 10 different computer systems having different central processing unit (CPU) architectures or compilers. There exist differences in the results for different compilers, parallel libraries, and optimization levels, primarily a result of the treatment of rounding errors by the different software systems. The system dependency, which is the standard deviation of the 500-hPa geopotential height averaged over the globe, increases with time. However, its fractional tendency, which is the change of the standard deviation relative to the value itself, remains nearly zero with time. In a seasonal prediction framework, the ensemble spread due to the differences in software system is comparable to the ensemble spread due to the differences in initial conditions that is used for the traditional ensemble forecasting.

Full access
Jung-Hoon Kim, Robert D. Sharman, Stanley G. Benjamin, John M. Brown, Sang-Hun Park, and Joseph B. Klemp

Abstract

Spurious mountain-wave features have been reported as false alarms of light-or-stronger numerical weather prediction (NWP)-based cruise level turbulence forecasts especially over the western mountainous region of North America. To reduce this problem, a hybrid sigma–pressure vertical coordinate system was implemented in NOAA’s operational Rapid Refresh model, version 4 (RAPv4), which has been running in parallel with the conventional terrain-following coordinate system of RAP version 3 (RAPv3). Direct comparison of vertical velocity |w| fields from the RAPv4 and RAPv3 models shows that the new RAPv4 model significantly reduces small-scale spurious vertical velocities induced by the conventional terrain-following coordinate system in the RAPv3. For aircraft-scale turbulence forecasts, |w| and |w|/Richardson number (|w|/Ri) derived from both the RAPv4 and RAPv3 models are converted into energy dissipation rate (EDR) estimates. Then, those EDR-scaled indices are evaluated using more than 1.2 million in situ EDR turbulence reports from commercial aircraft for 4 months (September–December 2017). Scores of the area under receiver operating characteristic curves for the |w|- and |w|/Ri-based EDR forecasts from the RAPv4 are 0.69 and 0.83, which is statistically significantly improved over the RAPv3 of 0.63 and 0.77, respectively. The new RAPv4 became operational on 12 July 2018 and provides better guidance for operational turbulence forecasting over North America.

Full access
Hye-Yeong Chun, Jung-Hoon Kim, Dan-Bi Lee, Soo-Hyun Kim, Matt Strahan, Brian Pettegrew, Philip Gill, Paul D. Williams, Ulrich Schumann, Joel Tenenbaum, Young-Gon Lee, Hee-Wook Choi, In-Sul Song, Ye-Ji Park, and Robert D. Sharman
Full access
Jhoon Kim, Ukkyo Jeong, Myoung-Hwan Ahn, Jae H. Kim, Rokjin J. Park, Hanlim Lee, Chul Han Song, Yong-Sang Choi, Kwon-Ho Lee, Jung-Moon Yoo, Myeong-Jae Jeong, Seon Ki Park, Kwang-Mog Lee, Chang-Keun Song, Sang-Woo Kim, Young Joon Kim, Si-Wan Kim, Mijin Kim, Sujung Go, Xiong Liu, Kelly Chance, Christopher Chan Miller, Jay Al-Saadi, Ben Veihelmann, Pawan K. Bhartia, Omar Torres, Gonzalo González Abad, David P. Haffner, Dai Ho Ko, Seung Hoon Lee, Jung-Hun Woo, Heesung Chong, Sang Seo Park, Dennis Nicks, Won Jun Choi, Kyung-Jung Moon, Ara Cho, Jongmin Yoon, Sang-kyun Kim, Hyunkee Hong, Kyunghwa Lee, Hana Lee, Seoyoung Lee, Myungje Choi, Pepijn Veefkind, Pieternel F. Levelt, David P. Edwards, Mina Kang, Mijin Eo, Juseon Bak, Kanghyun Baek, Hyeong-Ahn Kwon, Jiwon Yang, Junsung Park, Kyung Man Han, Bo-Ram Kim, Hee-Woo Shin, Haklim Choi, Ebony Lee, Jihyo Chong, Yesol Cha, Ja-Ho Koo, Hitoshi Irie, Sachiko Hayashida, Yasko Kasai, Yugo Kanaya, Cheng Liu, Jintai Lin, James H. Crawford, Gregory R. Carmichael, Michael J. Newchurch, Barry L. Lefer, Jay R. Herman, Robert J. Swap, Alexis K. H. Lau, Thomas P. Kurosu, Glen Jaross, Berit Ahlers, Marcel Dobber, C. Thomas McElroy, and Yunsoo Choi

Abstract

The Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in February 2020 to monitor air quality (AQ) at an unprecedented spatial and temporal resolution from a geostationary Earth orbit (GEO) for the first time. With the development of UV–visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO, and aerosols) can be obtained. To date, all the UV–visible satellite missions monitoring air quality have been in low Earth orbit (LEO), allowing one to two observations per day. With UV–visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be on board the Geostationary Korea Multi-Purpose Satellite 2 (GEO-KOMPSAT-2) satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager 2 (GOCI-2). These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA’s Tropospheric Emissions: Monitoring of Pollution (TEMPO) and ESA’s Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS).

Free access