Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Hristo G. Chipilski x
  • All content x
Clear All Modify Search
Hristo G. Chipilski, Xuguang Wang, and David B. Parsons

Abstract

A novel object-based algorithm capable of identifying and tracking convective outflow boundaries in convection-allowing numerical models is presented in this study. The most distinct feature of the proposed algorithm is its ability to seamlessly analyze numerically simulated density currents and bores, both of which play an important role in the dynamics of nocturnal convective systems. The unified identification and classification of these morphologically different phenomena is achieved through a multivariate approach combined with appropriate image processing techniques. The tracking component of the algorithm utilizes two dynamical constraints, which improve the object association results in comparison to methods based on statistical assumptions alone. Special attention is placed on some of the outstanding challenges regarding the formulation of the algorithm and possible ways to address those in future research. Apart from describing the technical details behind the algorithm, this study also introduces specific algorithm applications relevant to the analysis and prediction of bores. These applications are illustrated for a retrospective case study simulated with a convection-allowing ensemble prediction system. The paper highlights how the newly developed algorithm tools naturally form a foundation for understanding the initiation, structure, and evolution of bores and convective systems in the nocturnal environment.

Full access
Hristo G. Chipilski, Xuguang Wang, and David B. Parsons

Abstract

Using data from the 6 July 2015 PECAN case study, this paper provides the first objective assessment of how the assimilation of ground-based remote sensing profilers affects the forecasts of bore-driven convection. To account for the multiscale nature of the phenomenon, data impacts are examined separately with respect to (i) the bore environment, (ii) the explicitly resolved bore, and (iii) the bore-initiated convection. The findings from this work suggest that remote sensing profiling instruments provide considerable advantages over conventional in situ observations, especially when the retrieved data are assimilated at a high temporal frequency. The clearest forecast improvements are seen in terms of the predicted bore environment where the assimilation of kinematic profilers reduces a preexisting bias in the structure of the low-level jet. Data impacts with respect to the other two forecast components are mixed in nature. While the assimilation of thermodynamic retrievals from the Atmospheric Emitted Radiance Interferometer (AERI) results in the best convective forecast, it also creates a positive bias in the height of the convectively generated bore. Conversely, the assimilation of wind profiler data improves the characteristics of the explicitly resolved bore, but tends to further exacerbate the lack of convection in the control forecasts. Various dynamical diagnostics utilized throughout this study provide a physical insight into the data impact results and demonstrate that a successful prediction of bore-driven convection requires an accurate depiction of the internal bore structure as well as the ambient environment ahead of it.

Full access
Xuguang Wang, Hristo G. Chipilski, Craig H. Bishop, Elizabeth Satterfield, Nancy Baker, and Jeffrey S. Whitaker

Abstract

A new multiscale, ensemble-based data assimilation (DA) method, multiscale local gain form ensemble transform Kalman filter (MLGETKF), is introduced. MLGETKF allows simultaneous update of multiple scales for both the ensemble mean and perturbations through assimilating all observations at once. MLGETKF performs DA in independent local volumes, which lends the algorithm a high degree of computational scalability. The multiscale analysis is enabled through the rapid creation of many pseudoensemble perturbations via a multiscale ensemble modulation procedure. The Kalman gain that is used to update the raw background ensemble mean and perturbations is based on this modulated ensemble, which intrinsically includes multiscale model space localization. Experiments with a noncycled statistical model show that the full background covariance estimated by MLGETKF more accurately resembles the shape of the true covariance than a scale-unaware localization. The mean analysis from the best-performing MLGETKF is statistically significantly more accurate than the best-performing scale-unaware LGETKF. The accuracy of the MLGETKF analysis is more sensitive to small-scale band localization radius than large-scale band. MLGETKF is further examined in a cycling DA context with a surface quasigeostrophic model. The root-mean-square potential temperature analysis error of the best-performing MLGETKF is 17.2% lower than that of the best-performing LGETKF. MLGETKF reduces analysis errors measured in kinetic energy spectra space by 30%–80% relative to LGETKF with the largest improvement at large scales. MLGETKF deterministic and ensemble mean forecasts are more accurate than LGETKF for full and large scales up to 5–6-day lead time and for small scales up to 3–4-day lead time, gaining ~12 h–1 day of predictability.

Restricted access
Kevin R. Haghi, Bart Geerts, Hristo G. Chipilski, Aaron Johnson, Samuel Degelia, David Imy, David B. Parsons, Rebecca D. Adams-Selin, David D. Turner, and Xuguang Wang

Abstract

There has been a recent wave of attention given to atmospheric bores in order to understand how they evolve and initiate and maintain convection during the night. This surge is attributable to data collected during the 2015 Plains Elevated Convection at Night (PECAN) field campaign. A salient aspect of the PECAN project is its focus on using multiple observational platforms to better understand convective outflow boundaries that intrude into the stable boundary layer and induce the development of atmospheric bores. The intent of this article is threefold: 1) to educate the reader on current and future foci of bore research, 2) to present how PECAN observations will facilitate aforementioned research, and 3) to stimulate multidisciplinary collaborative efforts across other closely related fields in an effort to push the limitations of prediction of nocturnal convection.

Open access