Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Huan Guo x
  • Refine by Access: All Content x
Clear All Modify Search
Fang Pan, Xianglei Huang, L. Larabbe Strow, and Huan Guo

Abstract

The Atmospheric Infrared Sounder (AIRS) level-1b radiances have been shown to be well calibrated (~0.3 K or higher) and have little secular drift (~4 mK yr−1) since operation started in September 2002. This paper investigates the linear trends of 10 years (2003–12) of AIRS global-mean radiances in the CO2 v 2 band that are sensitive to emissions from the stratosphere (stratospheric channels). AIRS lower-stratospheric channels have a cooling trend of no more than 0.23 K decade−1 whereas the midstratospheric channels consistently show a statistically significant cooling trend as large as 0.58 K decade−1. The 95% confidence interval for the trend is ~±0.20 K decade−1. Two sets of synthetic AIRS radiances are computed using the principal component–based radiative transfer model (PCRTM), one based on a free-running GFDL Atmospheric Model, version 3 (AM3), over the same period and one based on ERA-Interim. The GFDL AM3 simulations overestimate the cooling trends in the mid- to upper-stratospheric channels but slightly underestimate them in the lower-stratospheric channels. The synthetic radiances based on ERA-Interim, however, have statistically significant positive trends at virtually all stratospheric channels. This confirms the challenge to the GCM modeling and reanalysis community to create a better simulation or assimilation of the stratospheric climate. It is shown that the linear trends in AIRS radiances can be reproduced to a large extent by the spectral radiative kernel technique and the trends from the AIRS L2 temperature retrievals and from the change of CO2. This suggests a closure between AIRS L1 radiances and L2 retrievals and the potential merit of AIRS data in studies of stratosphere changes.

Full access
Tianmeng Chen, Jianping Guo, Zhanqing Li, Chuanfeng Zhao, Huan Liu, Maureen Cribb, Fu Wang, and Jing He

Abstract

Many efforts have been taken to investigate aerosol–cloud interactions from space, but only a few studies have examined the response of vertical cloud structure to aerosol perturbations. Three-dimensional cloud climatologies of eight different cloud types identified from the CloudSat level-2 cloud product during the warm season (May–September) in 2008–10 over eastern China were first generated and analyzed. Using visibility as a proxy for cloud condensation nuclei, in combination with satellite-observed radar reflectivity, normalized contoured frequency by altitude diagrams of the differences in cloud radar reflectivity Z profiles under polluted and clean conditions were constructed. For shallow cumulus clouds (shallow Cu) Z tends to be inhibited, and it is enhanced in the upper layers for deep cumulus (deep Cu), nimbostratus (Ns), and deep convective clouds (DCC) under polluted conditions. Overall, analyses of the modified center of gravity (MCOG) and cloud-top height (CTH) also point to a similar aerosol effect, except for the nonsignificant changes in MCOGs and CTHs in deep Cu. The impacts of environmental factors such as lower-tropospheric stability and vertical velocity are also discussed for these types of clouds. Although consistent aerosol-induced elevations in MCOGs and CTHs for Ns and DCC clouds are observed, the effect of meteorology cannot be completely ruled out, which merits further analysis.

Full access
Huan Guo, Jean-Christophe Golaz, Leo J. Donner, Paul Ginoux, and Richard S. Hemler

Abstract

A unified turbulence and cloud parameterization based on multivariate probability density functions (PDFs) has been incorporated into the GFDL atmospheric general circulation model (AM3). This PDF-based parameterization not only predicts subgrid variations in vertical velocity, temperature, and total water, which bridge subgrid-scale processes (e.g., aerosol activation and cloud microphysics) and grid-scale dynamic and thermodynamic fields, but also unifies the treatment of planetary boundary layer (PBL), shallow convection, and cloud macrophysics. This parameterization is called the Cloud Layers Unified by Binormals (CLUBB) parameterization. With the incorporation of CLUBB in AM3, coupled with a two-moment cloud microphysical scheme, AM3–CLUBB allows for a more physically based and self-consistent treatment of aerosol activation, cloud micro- and macrophysics, PBL, and shallow convection.

The configuration and performance of AM3–CLUBB are described. Cloud and radiation fields, as well as most basic climate features, are modeled realistically. Relative to AM3, AM3–CLUBB improves the simulation of coastal stratocumulus, a longstanding deficiency in GFDL models, and their seasonal cycle, especially at higher horizontal resolution, but global skill scores deteriorate slightly. Through sensitivity experiments, it is shown that 1) the two-moment cloud microphysics helps relieve the deficiency of coastal stratocumulus, 2) using the CLUBB subgrid cloud water variability in the cloud microphysics has a considerable positive impact on global cloudiness, and 3) the impact of adjusting CLUBB parameters is to improve the overall agreement between model and observations.

Full access
Hyeyum Hailey Shin, Yi Ming, Ming Zhao, Jean-Christophe Golaz, Baoqiang Xiang, and Huan Guo

Abstract

This study describes the performance of two Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric general circulation models (AGCMs) in simulating the climatologies of planetary boundary layer (PBL) parameters, with a particular focus on the diurnal cycles. The two models differ solely in the PBL parameterization: one uses a prescribed K-profile parameterization (KPP) scheme with an entrainment parameterization, and the other employs a turbulence kinetic energy (TKE) scheme. The models are evaluated through comparison with the reanalysis ensemble, which is generated from European Centre for Medium-Range Weather Forecasts (ECMWF) twentieth-century reanalysis (ERA-20C), ERA-Interim, NCEP CFSR, and NASA MERRA, and the following systematic biases are identified. The models exhibit widespread cold biases in the high latitudes, and the biases are smaller when the KPP scheme is used. The diurnal cycle amplitudes are underestimated in most dry regions, and the model with the TKE scheme simulates larger amplitudes. For the near-surface winds, the models underestimate both the daily means and the diurnal amplitudes; the differences between the models are relatively small compared to the biases. The role of the PBL schemes in simulating the PBL parameters is investigated through the analysis of vertical profiles. The Sahara, which is suitable for focusing on the role of vertical mixing in dry PBLs, is selected for a detailed analysis. It reveals that compared to the KPP scheme, the heat transport is weaker with the TKE scheme in both convective and stable PBLs as a result of weaker vertical mixing, resulting in larger diurnal amplitudes. Lack of nonlocal momentum transport from the nocturnal low-level jets to the surfaces appears to explain the underestimation of the near-surface winds in the models.

Full access
Hong-Yi Li, L. Ruby Leung, Augusto Getirana, Maoyi Huang, Huan Wu, Yubin Xu, Jiali Guo, and Nathalie Voisin

Abstract

Accurately simulating hydrological processes such as streamflow is important in land surface modeling because they can influence other land surface processes, such as carbon cycle dynamics, through various interaction pathways. This study aims to evaluate the global application of a recently developed Model for Scale Adaptive River Transport (MOSART) coupled with the Community Land Model, version 4 (CLM4). To support the global implementation of MOSART, a comprehensive global hydrography dataset has been derived at multiple resolutions from different sources. The simulated runoff fields are first evaluated against the composite runoff map from the Global Runoff Data Centre (GRDC). The simulated streamflow is then shown to reproduce reasonably well the observed daily and monthly streamflow at over 1600 of the world’s major river stations in terms of annual, seasonal, and daily flow statistics. The impacts of model structure complexity are evaluated, and results show that the spatial and temporal variability of river velocity simulated by MOSART is necessary for capturing streamflow seasonality and annual maximum flood. Other sources of the simulation bias include uncertainties in the atmospheric forcing, as revealed by simulations driven by four different climate datasets, and human influences, based on a classification framework that quantifies the impact levels of large dams on the streamflow worldwide.

Full access
Catherine M. Naud, James F. Booth, Jeyavinoth Jeyaratnam, Leo J. Donner, Charles J. Seman, Ming Zhao, Huan Guo, and Yi Ming

Abstract

The clouds in Southern Hemisphere extratropical cyclones generated by the GFDL climate model are analyzed against MODIS, CloudSat, and CALIPSO cloud and precipitation observations. Two model versions are used: one is a developmental version of “AM4,” a model GFDL that will utilize for CMIP6, and the other is the same model with a different parameterization of moist convection. Both model versions predict a realistic top-of-atmosphere cloud cover in the southern oceans, within 5% of the observations. However, an examination of cloud cover transects in extratropical cyclones reveals a tendency in the models to overestimate high-level clouds (by differing amounts) and underestimate cloud cover at low levels (again by differing amounts), especially in the post–cold frontal (PCF) region, when compared with observations. In focusing only on the models, it is seen that their differences in high and midlevel clouds are consistent with their differences in convective activity and relative humidity (RH), but the same is not true for the PCF region. In this region, RH is higher in the model with less cloud fraction. These seemingly contradictory cloud and RH differences can be explained by differences in the cloud-parameterization tuning parameters that ensure radiative balance. In the PCF region, the model cloud differences are smaller than either of the model biases with respect to observations, suggesting that other physics changes are needed to address the bias. The process-oriented analysis used to assess these model differences will soon be automated and shared.

Full access
Wanchun Zhang, Jianping Guo, Yucong Miao, Huan Liu, Yu Song, Zhang Fang, Jing He, Mengyun Lou, Yan Yan, Yuan Li, and Panmao Zhai

Abstract

Strongly influenced by thermodynamic stability, the planetary boundary layer (PBL) is key to the exchange of heat, momentum, and moisture between the ground surface and free troposphere. The PBL with different thermodynamic stability across the whole of China, however, is not yet well understood. In this study, the occurrence frequency and spatial distribution of the convective boundary layer (CBL), neutral boundary layer (NBL), and stable boundary layer (SBL) were systematically investigated, based on intensive summertime soundings launched at 1400 Beijing time (BJT) throughout China’s radiosonde network (CRN) for the period 2012 to 2016. Overall, the occurrences of CBL, NBL, and SBL account for 70%, 26%, and 4%, respectively, suggesting that CBL dominates in summer throughout China. In terms of the spatial pattern of PBL height, a prominent north–south gradient can be found with higher PBL height in northwest China. In addition, the PBL heights of CBL and NBL were found to be positively (negatively) associated with near-surface air temperature (humidity), whereas no apparent relationship was found for SBL. Furthermore, clouds tend to reduce the occurrence frequency, irrespective of PBL type. Roughly 70% of SBL cases occur under overcast conditions, much higher than those for NBL and CBL, indicating that clouds govern to some extent the occurrence of SBL. In contrast, except for the discernible changes in PBL height under overcast conditions relative to those under clear-sky conditions, the changes in PBL height under partly cloudy conditions are no more than 170 m for both NBL and CBL types.

Full access