Search Results

You are looking at 1 - 10 of 16 items for

  • Author or Editor: Huei-Ping Huang x
  • All content x
Clear All Modify Search
Huei-Ping Huang

Abstract

The scale-dependent characteristics of the optimal perturbations in a zonally asymmetric barotropic model are examined. The dependence of the optimal energy growth on the initial scale is investigated through the calculations of spectrally constrained optimal perturbations. Considering an optimization time of τ = 3 days, and a basic state containing an idealized Asian jet, the optimal amplification factor generally increases with the decrease of the imposed initial scale. In the absence of diffusion, the most amplifying scale becomes the smallest scale in the model. An energetics analysis shows that the energy conversion in the optimal excitation process is dominated by the shear straining term, with a sharp increase in the scale of the perturbation accompanying the explosive energy growth. These results show the similarity between the optimally growing process in the zonally asymmetric system and the shear straining process in a parallel shear flow. Except when a small τ is considered or a sufficiently strong diffusion is used in the system, the optimal energy growth for small-scale disturbances sensitively depends on the zonally varying feature of the basic state. With τ = 3 days, the optimal amplification factors for small-scale disturbances are reduced significantly when the idealized Asian jet is shortened by only one-fifth. At the same time, those for medium- and large-scale disturbances are almost unaffected by the change of the basic state. The reasons for this contrast of the sensitivity property between the small and large scales are discussed.

Full access
Houk Paek and Huei-Ping Huang

Abstract

The climatology and trend of atmospheric angular momentum from the phase 3 and the phase 5 Climate Model Intercomparison Project (CMIP3 and CMIP5, respectively) simulations are diagnosed and validated with the Twentieth Century Reanalysis (20CR). It is found that CMIP5 models produced a significantly smaller bias in the twentieth-century climatology of the relative MR and omega M Ω angular momentum compared to CMIP3. The CMIP5 models also produced a narrower ensemble spread of the climatology and trend of MR and M Ω. Both CMIP3 and CMIP5 simulations consistently produced a positive trend in MR and M Ω for the twentieth and twenty-first centuries. The trend for the twenty-first century is much greater, reflecting the role of greenhouse gas (GHG) forcing in inducing the trend. The simulated increase in MR for the twentieth century is consistent with reanalysis. Both CMIP3 and CMIP5 models produced a wide range of magnitudes of decadal and interdecadal variability of MR compared to 20CR. The ratio of the simulated standard deviation of decadal or interdecadal variability to its observed counterpart ranges from 0.5 to over 2.0 for individual models. Nevertheless, the bias is largely random and ensemble averaging brings the ratio to within 18% of the reanalysis for decadal and interdecadal variability for both CMIP3 and CMIP5. The twenty-first-century simulations from both CMIP3 and CMIP5 produced only a small trend in the amplitude of decadal or interdecadal variability, which is not statistically significant. Thus, while GHG forcing induces a significant increase in the climatological mean of angular momentum, it does not significantly affect its decadal-to-interdecadal variability in the twenty-first century.

Full access
Houk Paek and Huei-Ping Huang

Abstract

An intercomparison of the global relative angular momentum MR in five reanalysis datasets, including the Twentieth Century Reanalysis (20CR), is performed for the second half of the twentieth century. The intercomparison forms a stringent test for 20CR because the variability of MR is known to be strongly influenced by the variability of upper-tropospheric zonal wind whereas 20CR assimilated only surface observations. The analysis reveals good agreement for decadal-to-multidecadal variability among all of the datasets, including 20CR, for the second half of the twentieth century. The discrepancies among different datasets are mainly in the slowest component, the long-term trend, of MR. Once the data are detrended, the resulting decadal-to-multidecadal variability shows even better agreement among all of the datasets. This result indicates that 20CR can be reliably used for the analysis of decadal-to-interdecadal variability in the pre-1950 era, provided that the data are properly detrended. As a quick application, it is found that the increase in MR during the 1976/77 climate-shift event remains the sharpest over the entire period from 1871 to 2008 covered by 20CR. The nontrivial difference in the long-term trend between 20CR and the other reanalysis datasets found in this study provides a caution against using 20CR to determine the trend on the centennial time scale that is relevant to climate change. These conclusions are restricted to the quantities that depend strongly on the upper-tropospheric zonal wind, but the approach adopted in this work will be useful for future intercomparisons of the low-frequency behavior of other climate indices in the reanalysis datasets.

Full access
Chien-Ben Chou and Huei-Ping Huang

Abstract

The use of the Advanced Very High Resolution Radiometer (AVHRR) data in a one-dimensional variational scheme is examined to retrieve cloud parameters and atmospheric profiles. The variational scheme used TIROS Operational Vertical Sounder radiance data for retrieval. The AVHRR data were used in the partly cloudy and cloudy cases to provide initial guesses for cloud parameters in the iterative scheme, to detect the presence of cirrus clouds, and to determine the sea surface temperature used in retrieval. Sensitivity tests showed that the error in the initial guesses of cloud parameters has substantial impact on the accuracy of the retrieved fields; this sensitivity increases with increased cloudiness. Cloud parameters deduced from AVHRR data are nearly optimal, in terms of maximizing the efficiency of convergence, as the initial guesses for the retrieval scheme. In the absence of cirrus cloud, a retrieval procedure incorporating AVHRR initial guesses produced temperature and humidity profiles for partly cloudy cases that are about as accurate as those for clear cases. In both cases the maximum improvement made in the retrieval procedure over background error was about 0.2 K in the temperature profile, and 0.05 (in logarithm of mixing ratio) in the humidity profile. For partly cloudy cases, best retrieval results were obtained for a low cloud top, or a middle cloud top but with small cloud fraction. Cirrus cloud remains a problem, as its presence generally degrades the quality of retrieval.

Full access
Huei-Ping Huang and Prashant D. Sardeshmukh

Abstract

The annual variation of global atmospheric angular momentum (AAM) is dominated by its first and second harmonic components. The first harmonic is associated with maximum global AAM in winter (December– January–February) and minimum in summer, but the second harmonic is important enough to produce a distinct secondary midwinter minimum. Locally, the second harmonic has largest amplitude in the Tropics and subtropics of the upper troposphere. At present, little is known concerning the fundamental cause of this semiannual variation. The problem is investigated here by focusing on the upper-tropospheric winds, whose angular momentum is an excellent proxy of global AAM. The annual variation of the rotational part of these winds (the part that contributes to the global AAM) is diagnosed in a nonlinear upper-tropospheric vorticity-equation model with specified horizontal wind divergence and transient-eddy forcing. The divergence forcing is the more important of the two, especially in the Tropics and subtropics, where it is associated with tropical heating and cooling. Given the harmonics of the forcing, the model predicts the harmonics of the response, that is, the vorticity, from which the harmonics of angular momentum can then be calculated. The surprising but clear conclusion from this diagnosis is that the second harmonic of AAM arises more as a nonlinear response to the first harmonic of the divergence forcing than as a linear response to the second harmonic of the divergence forcing. This result has implications for general circulation model simulations of semiannual variations, not only of global AAM but also of other quantities.

Full access
Huei-Ping Huang and Walter A. Robinson

Abstract

Branstator–Kushnir-type large-scale westward propagating waves are investigated using linear and nonlinear global barotropic models with an idealized zonally asymmetric basic state. Retrograde waves are found in the most unstable normal mode of the zonally asymmetric basic state with a jet in the Northern Hemisphere. West-ward propagating waves also exist in nonlinear equilibrium states under a wide range of supercriticality and in both periodic and chaotic regimes. The frequency of the most unstable mode remains as a peak in the frequency spectrum through the nonlinear equilibration process. That frequency matches the frequency of the westward propagating waves in the nonlinear equilibrium states. Local energetics analyses of the linear and nonlinear cases show that the barotropic energy conversion concentrated in the jet exit supplies the perturbation energy of the disturbances all over the globe. Under a traditional spherical-harmonic decomposition, the westward propagating waves consist of several spherical-harmonic components. In the weakly chaotic nonlinear equilibrium states, these components show higher regularity in time than the others and may possess higher predictability.

Full access
Girish Nigamanth Raghunathan and Huei-Ping Huang

Abstract

This study performs an updated analysis of Northern Hemisphere retrograde disturbances that were first identified by classical observational studies as one of the dominating coherent structures in the higher latitudes on the submonthly time scale. Analyzing 8–30-day bandpass-filtered data based on reanalysis, a set of criteria on the phase and amplitude of zonal wave-1 Fourier coefficients of geopotential height anomalies at 250 mb (1 mb = 1 hPa) and 60°N are used to identify strong retrograde-wave events in the spirit of Madden and Speth. The new catalog of retrograde-wave events from 1979 to 2017 is used to extract basic statistics and structures of retrograde waves across all major events. The results broadly agree with those reported in the classical observational studies, reaffirming the robustness of the phenomenon. The new catalog can be used to aid further studies on the mechanisms and predictability of retrograde waves. As an example, an analysis of isentropic potential vorticity over the Pacific sector for selected retrograde-wave events reveals the common occurrence of an extrusion of low-PV air into the higher latitudes, followed by a westward shift of the low-PV patch and vortex shedding. Future directions of research surrounding the retrograde-wave phenomenon are discussed.

Free access
Huei-Ping Huang and Klaus M. Weickmann

Abstract

This note evaluates the numerical schemes used for computing the axial component of the mountain torque from gridded global surface pressure and topography datasets. It is shown that the two formulas of the mountain torque based on (i) an integral of the product of the surface pressure and the gradient of topography, and (ii) an integral of the product of the topography and the surface pressure gradient, should produce identical results if a centered even-ordered finite-difference scheme or the spectral method is used to evaluate the integrand. Noncentered finite-difference schemes are not recommended not only because they produce extremely large errors but also because they produce different results for the two formulas. When compared with the benchmark calculation using the spectral method, it is found that the centered fourth-order finite-difference scheme is an efficient and generally accurate approximation for practical applications. Using the data from NCEP–NCAR reanalysis, the finite-difference schemes generally underestimate the global mountain torque compared to the benchmark. This negative error is interpreted as due to the asymmetry in the distribution of surface pressure and in the steepness of the topography between the western and eastern slopes of the mountains.

Full access
Huei-Ping Huang and Walter A. Robinson

Abstract

The dynamics of two-dimensional turbulence on a rotating sphere are examined. The anisotropic Rhines scale is derived and verified in decaying turbulence simulations. Due to the anisotropic nature of the Rossby waves, the Rhines barrier is displaced toward small total wavenumber n with decreasing zonal wavenumber m. Up-scale energy transfer along the zonal axis (m = 0) is not directly arrested by beta. A forced dissipative model with high-wavenumber forcing is used to investigate the dynamics of persistent zonal jets. Persistent jets form in the low energy (strong rotation) cases with the root-mean-square velocity V*rmsaΩ. Under a fixed rotation rate, the jet scale decreases with the energy. The equilibrated jets generally stay at fixed latitudes. The zonal bands are nearly uniformly distributed in latitude, except that bands in the high latitudes tend to be wider and weaker, as clearly affected by a decreasing beta with latitude. The time-mean zonal winds in the forced simulations appear to be stable, with their absolute vorticity gradient dominated by beta. The increase of the jet scale with energy as required by stability is consistent with the simulated results.

Diagnostic analysis shows that the persistent jets are primarily maintained by the shear-straining mechanism involving small-scale eddies and large-scale zonal jets, with a clear scale separation between them. Although large-scale eddies, those at scales near the Rhines scale, possess most of the eddy energy, in the time mean they contribute little to the maintenance of the zonal jets. Thus, despite the similarity between the Rhines scale and the jet scale, their dynamical link is not obvious in the time-mean statistics. The presence of persistent zonal jets modifies the normal modes of the system. Pure Rossby–Haurwitz modes at small and medium scales are severely modified and fall into the continuum. Large-scale modes, however, may remain discrete. The discreteness of the large-scale modes limits their ability to exchange energy with the zonal jets in the time mean.

Full access
Noel C. Baker and Huei-Ping Huang

Abstract

The twentieth-century climatology and twenty-first-century trend in precipitation P, evaporation E, and P − E for selected semiarid U.S. Southwest and Mediterranean regions are compared between ensembles from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5). The twentieth-century simulations are validated with precipitation from observation and evaporation from reanalysis. It is found that the Special Report on Emissions Scenarios (SRES) A1B simulations in CMIP3 and the simulations with representative concentration pathways (RCPs) 4.5 and 8.5 in CMIP5 produce qualitatively similar seasonal cycles of the twenty-first-century trend in P − E for both semiarid regions. For the southwestern United States, it is characterized by a strong drying trend in spring, a weak moistening trend in summer, a weak drying trend in winter, and an overall drying trend for the annual mean. For the Mediterranean region, a drying trend is simulated for all seasons with an October maximum and July minimum. The consistency between CMIP3 and CMIP5 scenarios indicates that the simulated trend is robust; however, while the trend in P − E is negative in spring for the southwestern United States for all CMIP ensembles, CMIP3 predicts a strongly negative trend in P and minor negative trend in E whereas both CMIP5 scenarios predict a nearly zero trend in P and positive trend in E. For the twentieth-century simulations, the P, E, and P − E of the two model ensembles are statistically indistinguishable for most seasons. This “stagnation” of the simulated climatology from CMIP3 to CMIP5 implies that the hydroclimatic variable biases have not decreased in the newer generation of models. Notably, over the southwestern United States the CMIP3 models produce too much precipitation in the cold season. This bias remains almost unchanged in CMIP5.

Full access