Search Results
You are looking at 1 - 10 of 10 items for
- Author or Editor: Hylke E. Beck x
- Refine by Access: All Content x
Abstract
We present a comprehensive global evaluation of monthly precipitation and temperature forecasts from 16 seasonal forecasting models within the NMME Phase-1 system, using Multi-Source Weighted-Ensemble Precipitation version 2 (MSWEP-V2; precipitation) and Climate Research Unit TS4.01 (CRU-TS4.01; temperature) data as reference. We first assessed the forecast skill for lead times of 1–8 months using Kling–Gupta efficiency (KGE), an objective performance metric combining correlation, bias, and variability. Next, we carried out an empirical orthogonal function (EOF) analysis to compare the spatiotemporal variability structures of the forecasts. We found that, in most cases, precipitation skill was highest during the first lead time (i.e., forecast in the month of initialization) and rapidly dropped thereafter, while temperature skill was much higher overall and better retained at higher lead times, which is indicative of stronger temporal persistence. Based on a comprehensive assessment over 21 regions and four seasons, we found that the skill showed strong regional and seasonal dependencies. Some tropical regions, such as the Amazon and Southeast Asia, showed high skill even at longer lead times for both precipitation and temperature. Rainy seasons were generally associated with high precipitation skill, while during winter, temperature skill was low. Overall, precipitation forecast skill was highest for the NASA, NCEP, CMC, and GFDL models, and for temperature, the NASA, CFSv2, COLA, and CMC models performed the best. The spatiotemporal variability structures were better captured for precipitation than temperature. The simple forecast averaging did not produce noticeably better results, emphasizing the need for more advanced weight-based averaging schemes.
Abstract
We present a comprehensive global evaluation of monthly precipitation and temperature forecasts from 16 seasonal forecasting models within the NMME Phase-1 system, using Multi-Source Weighted-Ensemble Precipitation version 2 (MSWEP-V2; precipitation) and Climate Research Unit TS4.01 (CRU-TS4.01; temperature) data as reference. We first assessed the forecast skill for lead times of 1–8 months using Kling–Gupta efficiency (KGE), an objective performance metric combining correlation, bias, and variability. Next, we carried out an empirical orthogonal function (EOF) analysis to compare the spatiotemporal variability structures of the forecasts. We found that, in most cases, precipitation skill was highest during the first lead time (i.e., forecast in the month of initialization) and rapidly dropped thereafter, while temperature skill was much higher overall and better retained at higher lead times, which is indicative of stronger temporal persistence. Based on a comprehensive assessment over 21 regions and four seasons, we found that the skill showed strong regional and seasonal dependencies. Some tropical regions, such as the Amazon and Southeast Asia, showed high skill even at longer lead times for both precipitation and temperature. Rainy seasons were generally associated with high precipitation skill, while during winter, temperature skill was low. Overall, precipitation forecast skill was highest for the NASA, NCEP, CMC, and GFDL models, and for temperature, the NASA, CFSv2, COLA, and CMC models performed the best. The spatiotemporal variability structures were better captured for precipitation than temperature. The simple forecast averaging did not produce noticeably better results, emphasizing the need for more advanced weight-based averaging schemes.
Abstract
Streamflow Q estimation in ungauged catchments is one of the greatest challenges facing hydrologists. Observed Q from 3000 to 4000 small-to-medium-sized catchments (10–10 000 km2) around the globe were used to train neural network ensembles to estimate Q characteristics based on climate and physiographic characteristics of the catchments. In total, 17 Q characteristics were selected, including mean annual Q, baseflow index, and a number of flow percentiles. Testing coefficients of determination for the estimation of the Q characteristics ranged from 0.55 for the baseflow recession constant to 0.93 for the Q timing. Overall, climate indices dominated among the predictors. Predictors related to soils and geology were relatively unimportant, perhaps because of their data quality. The trained neural network ensembles were subsequently applied spatially over the entire ice-free land surface, resulting in global maps of the Q characteristics (at 0.125° resolution). These maps possess several unique features: they represent observation-driven estimates, they are based on an unprecedentedly large set of catchments, and they have associated uncertainty estimates. The maps can be used for various hydrological applications, including the diagnosis of macroscale hydrological models. To demonstrate this, the produced maps were compared to equivalent maps derived from the simulated daily Q of four macroscale hydrological models, highlighting various opportunities for improvement in model Q behavior. The produced dataset is available online (http://water.jrc.ec.europa.eu/GSCD).
Abstract
Streamflow Q estimation in ungauged catchments is one of the greatest challenges facing hydrologists. Observed Q from 3000 to 4000 small-to-medium-sized catchments (10–10 000 km2) around the globe were used to train neural network ensembles to estimate Q characteristics based on climate and physiographic characteristics of the catchments. In total, 17 Q characteristics were selected, including mean annual Q, baseflow index, and a number of flow percentiles. Testing coefficients of determination for the estimation of the Q characteristics ranged from 0.55 for the baseflow recession constant to 0.93 for the Q timing. Overall, climate indices dominated among the predictors. Predictors related to soils and geology were relatively unimportant, perhaps because of their data quality. The trained neural network ensembles were subsequently applied spatially over the entire ice-free land surface, resulting in global maps of the Q characteristics (at 0.125° resolution). These maps possess several unique features: they represent observation-driven estimates, they are based on an unprecedentedly large set of catchments, and they have associated uncertainty estimates. The maps can be used for various hydrological applications, including the diagnosis of macroscale hydrological models. To demonstrate this, the produced maps were compared to equivalent maps derived from the simulated daily Q of four macroscale hydrological models, highlighting various opportunities for improvement in model Q behavior. The produced dataset is available online (http://water.jrc.ec.europa.eu/GSCD).
Abstract
We present Multi-Source Weather (MSWX), a seamless global gridded near-surface meteorological product featuring a high 3-hourly 0.1° resolution, near-real-time updates (∼3-h latency), and bias-corrected medium-range (up to 10 days) and long-range (up to 7 months) forecast ensembles. The product includes 10 meteorological variables: precipitation, air temperature, daily minimum and maximum air temperature, surface pressure, relative and specific humidity, wind speed, and downward shortwave and longwave radiation. The historical part of the record starts 1 January 1979 and is based on ERA5 data bias corrected and downscaled using high-resolution reference climatologies. The data extension to within ∼3 h of real time is based on analysis data from GDAS. The 30-member medium-range forecast ensemble is based on GEFS and updated daily. Finally, the 51-member long-range forecast ensemble is based on SEAS5 and updated monthly. The near-real-time and forecast data are statistically harmonized using running-mean and cumulative distribution function-matching approaches to obtain a seamless record covering 1 January 1979 to 7 months from now. MSWX presents new and unique opportunities for hydrological modeling, climate analysis, impact studies, and monitoring and forecasting of droughts, floods, and heatwaves (within the bounds of the caveats and limitations discussed herein). The product is available at www.gloh2o.org/mswx.
Abstract
We present Multi-Source Weather (MSWX), a seamless global gridded near-surface meteorological product featuring a high 3-hourly 0.1° resolution, near-real-time updates (∼3-h latency), and bias-corrected medium-range (up to 10 days) and long-range (up to 7 months) forecast ensembles. The product includes 10 meteorological variables: precipitation, air temperature, daily minimum and maximum air temperature, surface pressure, relative and specific humidity, wind speed, and downward shortwave and longwave radiation. The historical part of the record starts 1 January 1979 and is based on ERA5 data bias corrected and downscaled using high-resolution reference climatologies. The data extension to within ∼3 h of real time is based on analysis data from GDAS. The 30-member medium-range forecast ensemble is based on GEFS and updated daily. Finally, the 51-member long-range forecast ensemble is based on SEAS5 and updated monthly. The near-real-time and forecast data are statistically harmonized using running-mean and cumulative distribution function-matching approaches to obtain a seamless record covering 1 January 1979 to 7 months from now. MSWX presents new and unique opportunities for hydrological modeling, climate analysis, impact studies, and monitoring and forecasting of droughts, floods, and heatwaves (within the bounds of the caveats and limitations discussed herein). The product is available at www.gloh2o.org/mswx.
Abstract
We introduce a set of global high-resolution (0.05°) precipitation (P) climatologies corrected for bias using streamflow (Q) observations from 9372 stations worldwide. For each station, we inferred the “true” long-term P using a Budyko curve, which is an empirical equation relating long-term P, Q, and potential evaporation. We subsequently calculated long-term bias correction factors for three state-of-the-art P climatologies [the “WorldClim version 2” database (WorldClim V2); Climatologies at High Resolution for the Earth’s Land Surface Areas, version 1.2 (CHELSA V1.2 ); and Climate Hazards Group Precipitation Climatology, version 1 (CHPclim V1)], after which we used random-forest regression to produce global gap-free bias correction maps for the P climatologies. Monthly climatological bias correction factors were calculated by disaggregating the long-term bias correction factors on the basis of gauge catch efficiencies. We found that all three climatologies systematically underestimate P over parts of all major mountain ranges globally, despite the explicit consideration of orography in the production of each climatology. In addition, all climatologies underestimate P at latitudes >60°N, likely because of gauge undercatch. Exceptionally high long-term correction factors (>1.5) were obtained for all three P climatologies in Alaska, High Mountain Asia, and Chile—regions characterized by marked elevation gradients, sparse gauge networks, and significant snowfall. Using the bias-corrected WorldClim V2, we demonstrated that other widely used P datasets (GPCC V2015, GPCP V2.3, and MERRA-2) severely underestimate P over Chile, the Himalayas, and along the Pacific coast of North America. Mean P for the global land surface based on the bias-corrected WorldClim V2 is 862 mm yr−1 (a 9.4% increase over the original WorldClim V2). The annual and monthly bias-corrected P climatologies have been released as the Precipitation Bias Correction (PBCOR) dataset, which is available online (http://www.gloh2o.org/pbcor/).
Abstract
We introduce a set of global high-resolution (0.05°) precipitation (P) climatologies corrected for bias using streamflow (Q) observations from 9372 stations worldwide. For each station, we inferred the “true” long-term P using a Budyko curve, which is an empirical equation relating long-term P, Q, and potential evaporation. We subsequently calculated long-term bias correction factors for three state-of-the-art P climatologies [the “WorldClim version 2” database (WorldClim V2); Climatologies at High Resolution for the Earth’s Land Surface Areas, version 1.2 (CHELSA V1.2 ); and Climate Hazards Group Precipitation Climatology, version 1 (CHPclim V1)], after which we used random-forest regression to produce global gap-free bias correction maps for the P climatologies. Monthly climatological bias correction factors were calculated by disaggregating the long-term bias correction factors on the basis of gauge catch efficiencies. We found that all three climatologies systematically underestimate P over parts of all major mountain ranges globally, despite the explicit consideration of orography in the production of each climatology. In addition, all climatologies underestimate P at latitudes >60°N, likely because of gauge undercatch. Exceptionally high long-term correction factors (>1.5) were obtained for all three P climatologies in Alaska, High Mountain Asia, and Chile—regions characterized by marked elevation gradients, sparse gauge networks, and significant snowfall. Using the bias-corrected WorldClim V2, we demonstrated that other widely used P datasets (GPCC V2015, GPCP V2.3, and MERRA-2) severely underestimate P over Chile, the Himalayas, and along the Pacific coast of North America. Mean P for the global land surface based on the bias-corrected WorldClim V2 is 862 mm yr−1 (a 9.4% increase over the original WorldClim V2). The annual and monthly bias-corrected P climatologies have been released as the Precipitation Bias Correction (PBCOR) dataset, which is available online (http://www.gloh2o.org/pbcor/).
Abstract
This study characterizes precipitation error propagation through a distributed hydrological model based on the river basins across the contiguous United States (CONUS), to better understand the relationship between errors in precipitation inputs and simulated discharge (i.e., P–Q error relationship). The NLDAS-2 precipitation and its simulated discharge are used as the reference to compare with TMPA-3B42 V7, TMPA-3B42RT V7, Stage IV, CPC-U, MERRA-2, and MSWEP V2.2 for 1548 well-gauged river basins. The relative errors in multiple conventional precipitation products and their corresponding discharges are analyzed for the period of 2002–13. The results reveal positive linear P–Q error relationships at annual and monthly time scales, and the stronger linearity for larger temporal accumulations. Precipitation errors can be doubled in simulated annual accumulated discharge. Moreover, precipitation errors are strongly dampened in basins characterized by temperate and continental climate regimes, particularly for peak discharges, showing highly nonlinear relationships. Radar-based precipitation product consistently shows dampening effects on error propagation through discharge simulations at different accumulation time scales compared to the other precipitation products. Although basin size and topography also influence the P–Q error relationship and propagation of precipitation errors, their roles depend largely on precipitation products, seasons, and climate regimes.
Abstract
This study characterizes precipitation error propagation through a distributed hydrological model based on the river basins across the contiguous United States (CONUS), to better understand the relationship between errors in precipitation inputs and simulated discharge (i.e., P–Q error relationship). The NLDAS-2 precipitation and its simulated discharge are used as the reference to compare with TMPA-3B42 V7, TMPA-3B42RT V7, Stage IV, CPC-U, MERRA-2, and MSWEP V2.2 for 1548 well-gauged river basins. The relative errors in multiple conventional precipitation products and their corresponding discharges are analyzed for the period of 2002–13. The results reveal positive linear P–Q error relationships at annual and monthly time scales, and the stronger linearity for larger temporal accumulations. Precipitation errors can be doubled in simulated annual accumulated discharge. Moreover, precipitation errors are strongly dampened in basins characterized by temperate and continental climate regimes, particularly for peak discharges, showing highly nonlinear relationships. Radar-based precipitation product consistently shows dampening effects on error propagation through discharge simulations at different accumulation time scales compared to the other precipitation products. Although basin size and topography also influence the P–Q error relationship and propagation of precipitation errors, their roles depend largely on precipitation products, seasons, and climate regimes.
Abstract
Better understanding and quantification of river floods for very local and “flashy” events calls for modeling capability at fine spatial and temporal scales. However, long-term discharge records with a global coverage suitable for extreme events analysis are still lacking. Here, grounded on recent breakthroughs in global runoff hydrology, river modeling, high-resolution hydrography, and climate reanalysis, we developed a 3-hourly river discharge record globally for 2.94 million river reaches during the 40-yr period of 1980–2019. The underlying modeling chain consists of the VIC land surface model (0.05°, 3-hourly) that is well calibrated and bias corrected and the RAPID routing model (2.94 million river and catchment vectors), with precipitation input from MSWEP and other meteorological fields downscaled from ERA5. Flood events (above 2-yr return) and their characteristics (number, spatial distribution, and seasonality) were extracted and studied. Validations against 3-hourly flow records from 6,000+ gauges in CONUS and daily records from 14,000+ gauges globally show good modeling performance across all flow ranges, good skills in reconstructing flood events (high extremes), and the benefit of (and need for) subdaily modeling. This data record, referred as Global Reach-Level Flood Reanalysis (GRFR), is publicly available at https://www.reachhydro.org/home/records/grfr.
Abstract
Better understanding and quantification of river floods for very local and “flashy” events calls for modeling capability at fine spatial and temporal scales. However, long-term discharge records with a global coverage suitable for extreme events analysis are still lacking. Here, grounded on recent breakthroughs in global runoff hydrology, river modeling, high-resolution hydrography, and climate reanalysis, we developed a 3-hourly river discharge record globally for 2.94 million river reaches during the 40-yr period of 1980–2019. The underlying modeling chain consists of the VIC land surface model (0.05°, 3-hourly) that is well calibrated and bias corrected and the RAPID routing model (2.94 million river and catchment vectors), with precipitation input from MSWEP and other meteorological fields downscaled from ERA5. Flood events (above 2-yr return) and their characteristics (number, spatial distribution, and seasonality) were extracted and studied. Validations against 3-hourly flow records from 6,000+ gauges in CONUS and daily records from 14,000+ gauges globally show good modeling performance across all flow ranges, good skills in reconstructing flood events (high extremes), and the benefit of (and need for) subdaily modeling. This data record, referred as Global Reach-Level Flood Reanalysis (GRFR), is publicly available at https://www.reachhydro.org/home/records/grfr.
Abstract
We present Multi-Source Weighted-Ensemble Precipitation, version 2 (MSWEP V2), a gridded precipitation P dataset spanning 1979–2017. MSWEP V2 is unique in several aspects: i) full global coverage (all land and oceans); ii) high spatial (0.1°) and temporal (3 hourly) resolution; iii) optimal merging of P estimates based on gauges [WorldClim, Global Historical Climatology Network-Daily (GHCN-D), Global Summary of the Day (GSOD), Global Precipitation Climatology Centre (GPCC), and others], satellites [Climate Prediction Center morphing technique (CMORPH), Gridded Satellite (GridSat), Global Satellite Mapping of Precipitation (GSMaP), and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42RT)], and reanalyses [European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) and Japanese 55-year Reanalysis (JRA-55)]; iv) distributional bias corrections, mainly to improve the P frequency; v) correction of systematic terrestrial P biases using river discharge Q observations from 13,762 stations across the globe; vi) incorporation of daily observations from 76,747 gauges worldwide; and vii) correction for regional differences in gauge reporting times. MSWEP V2 compares substantially better with Stage IV gauge–radar P data than other state-of-the-art P datasets for the United States, demonstrating the effectiveness of the MSWEP V2 methodology. Global comparisons suggest that MSWEP V2 exhibits more realistic spatial patterns in mean, magnitude, and frequency. Long-term mean P estimates for the global, land, and ocean domains based on MSWEP V2 are 955, 781, and 1,025 mm yr−1, respectively. Other P datasets consistently underestimate P amounts in mountainous regions. Using MSWEP V2, P was estimated to occur 15.5%, 12.3%, and 16.9% of the time on average for the global, land, and ocean domains, respectively. MSWEP V2 provides unique opportunities to explore spatiotemporal variations in P, improve our understanding of hydrological processes and their parameterization, and enhance hydrological model performance.
Abstract
We present Multi-Source Weighted-Ensemble Precipitation, version 2 (MSWEP V2), a gridded precipitation P dataset spanning 1979–2017. MSWEP V2 is unique in several aspects: i) full global coverage (all land and oceans); ii) high spatial (0.1°) and temporal (3 hourly) resolution; iii) optimal merging of P estimates based on gauges [WorldClim, Global Historical Climatology Network-Daily (GHCN-D), Global Summary of the Day (GSOD), Global Precipitation Climatology Centre (GPCC), and others], satellites [Climate Prediction Center morphing technique (CMORPH), Gridded Satellite (GridSat), Global Satellite Mapping of Precipitation (GSMaP), and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42RT)], and reanalyses [European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) and Japanese 55-year Reanalysis (JRA-55)]; iv) distributional bias corrections, mainly to improve the P frequency; v) correction of systematic terrestrial P biases using river discharge Q observations from 13,762 stations across the globe; vi) incorporation of daily observations from 76,747 gauges worldwide; and vii) correction for regional differences in gauge reporting times. MSWEP V2 compares substantially better with Stage IV gauge–radar P data than other state-of-the-art P datasets for the United States, demonstrating the effectiveness of the MSWEP V2 methodology. Global comparisons suggest that MSWEP V2 exhibits more realistic spatial patterns in mean, magnitude, and frequency. Long-term mean P estimates for the global, land, and ocean domains based on MSWEP V2 are 955, 781, and 1,025 mm yr−1, respectively. Other P datasets consistently underestimate P amounts in mountainous regions. Using MSWEP V2, P was estimated to occur 15.5%, 12.3%, and 16.9% of the time on average for the global, land, and ocean domains, respectively. MSWEP V2 provides unique opportunities to explore spatiotemporal variations in P, improve our understanding of hydrological processes and their parameterization, and enhance hydrological model performance.
Abstract
—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES
Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.
In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.
Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.
While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.
The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.
In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.
In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.
Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.
A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.
As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.
In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.
On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.
Abstract
—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES
Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.
In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.
Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.
While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.
The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.
In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.
In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.
Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.
A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.
As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.
In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.
On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.