Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: I. Fung x
  • Refine by Access: All Content x
Clear All Modify Search
F. L. Yin, I. Y. Fung, and C. K. Chu

Abstract

A multilayer ocean model that is physically simple and computationally efficient is developed for studies of competition and interaction among deep-water sources in determining ocean circulation. The model is essentially geostrophic and hydrostatic in the ocean interior with Rayleigh friction added in boundary-layer and equatorial regions. A stably stratified density structure is specified at static equilibrium, and cross-isopycnal mixing is parameterized as a diffusive flux. The model is forced by latitudinally varying Ekman pumping velocities at the base of the ocean surface Ekman layer and localized deep-water sources.

A four-layer version of the model has been run in a rectangular basin with 5000-m depth, extending from 65°S to 65°N latitude and covering 70 degrees of longitude. The four layers mimic the major water masses observed in the Atlantic Ocean: thermocline water, intermediate water, North Atlantic Deep Water (NADW), and Antarctic Bottom Water (AABW). For forcing corresponding to the current climate, warm water and cold water circulation routes produced in the model agree with those inferred from observations, for example, southward-flowing NADW overriding northward-flowing AABW in the western boundary.

The model shows that subtropical gyres intensify, and thermocline depths become shallow, when deep-water formation rates increase, or when vertical diffusivity kv decreases, or when more NADW is formed from the thermocline layer than that from the intermediate layer. Consistent with the advective thermocline depth scaling, distributions of the Ekman pumping contribute little to deep-water circulations.

The interaction between NADW and AABW sources is demonstrated. Changes in the formation rate of a deep-water source alter cross-isopycnal flows, especially along the related circulation route, thus altering the extent that the other sources can travel before they detrain significantly. These changes feed back onto the thermocline circulation and cross-equatorial transports.

The model suggests that reduction in deep-water formation rate may increase the transient response time of the atmosphere to perturbations, because the thermocline depth becomes deeper. Also, poleward heat transport may decrease, thus acting to self-regulate the temperatures in polar regions.

Full access
L. Bounoua, G. J. Collatz, P. J. Sellers, D. A. Randall, D. A. Dazlich, S. O. Los, J. A. Berry, I. Fung, C. J. Tucker, C. B. Field, and T. G. Jensen

Abstract

The radiative and physiological effects of doubled atmospheric carbon dioxide (CO2) on climate are investigated using a coupled biosphere–atmosphere model. Five 30-yr climate simulations, designed to assess the radiative and physiological effects of doubled CO2, were compared to a 30-yr control run.

When the CO2 concentration was doubled for the vegetation physiological calculations only assuming no changes in vegetation biochemistry, the mean temperature increase over land was rather small (0.3 K) and was associated with a slight decrease in precipitation (−0.3%). In a second case, the vegetation was assumed to have adapted its biochemistry to a doubled CO2 (2 × CO2) atmosphere and this down regulation caused a 35% decrease in stomatal conductance and a 0.7-K increase in land surface temperature. The response of the terrestrial biosphere to radiative forcing alone—that is, a conventional greenhouse warming effect—revealed important interactions between the climate and the vegetation. Although the global mean photosynthesis exhibited no change, a slight stimulation was observed in the tropical regions, whereas in the northern latitudes photosynthesis and canopy conductance decreased as a result of high temperature stress during the growing season. This was associated with a temperature increase of more than 2 K greater in the northern latitudes than in the Tropics (4.0 K vs 1.7 K). These interactions also resulted in an asymmetry in the diurnal temperature cycle, especially in the Tropics where the nighttime temperature increase due to radiative forcing was about twice that of the daytime, an effect not discernible in the daily mean temperatures. The radiative forcing resulted in a mean temperature increase over land of 2.6 K and 7% increase in precipitation with the least effect in the Tropics. As the physiological effects were imposed along with the radiative effects, the overall temperature increase over land was 2.7 K but with a smaller difference (0.7 K) between the northern latitudes and the Tropics. The radiative forcing resulted in an increase in available energy at the earth’s surface and, in the absence of physiological effects, the evapotranspiration increased. However, changes in the physiological control of evapotranspiration due to increased CO2 largely compensated for the radiative effects and reduced the evapotranspiration approximately to its control value.

Full access
D.A. Randall, D.A. Dazlich, C. Zhang, A.S. Denning, P.J. Sellers, C.J. Tucker, L. Bounoua, J.A. Berry, G.J. Collatz, C.B. Field, S.O. Los, C.O. Justice, and I. Fung

Abstract

SiB2, the second-generation land-surface parameterization developed by Sellers et al., has been incorporated into the Colorado State University general circulation model and tested in multidecade simulation. The control run uses a “bucket” hydrology but employs the same surface albedo and surface roughness distributions as the SiB2 run.

Results show that SiB2 leads to a general warming of the continents, as evidenced in the ground temperature, surface air temperature, and boundary-layer-mean potential temperature. The surface sensible heat flux increases and the latent heat flux decreases. This warming occurs virtually everywhere but is most spectacular over Siberia in winter.

Precipitation generally decreases over land but increases in the monsoon regions, especially the Amazon basin in January and equatorial Africa and Southeast Asia in July. Evaporation decreases considerably, especially in dry regions such as the Sahara. The excess of precipitation over evaporation increases in the monsoon regions.

The precipitable water (vertically integrated water vapor content) generally decreases over land but increases in the monsoon regions. The mixing ratio of the boundary-layer air decreases over newly all continental areas, however, including the monsoon regions. The average (composite) maximum boundary-layer depth over the diurnal cycle increases in the monsoon regions, as does the average PBL turbulence kinetic energy. The average boundary-layer wind speed also increases over most continental regions.

Groundwater content generally increases in rainy regions and decreases in dry regions, so that SiB2 has a tendency to increase its spatial variability. SiB2 leas to a general reduction of cloudiness over land. The net surface longwave cooling of the surface increases quite dramatically over land, in accordance with the increased surface temperatures and decreased cloudiness. The solar radiation absorbed at the ground also increases.

SiB2 has modest effects on the simulated general circulation of the atmosphere. Its most important impacts on the model are to improve the simulations of surface temperature and snow cover and to enable the simulation of the net rate of terrestrial carbon assimilation

Full access
P. Friedlingstein, P. Cox, R. Betts, L. Bopp, W. von Bloh, V. Brovkin, P. Cadule, S. Doney, M. Eby, I. Fung, G. Bala, J. John, C. Jones, F. Joos, T. Kato, M. Kawamiya, W. Knorr, K. Lindsay, H. D. Matthews, T. Raddatz, P. Rayner, C. Reick, E. Roeckner, K.-G. Schnitzler, R. Schnur, K. Strassmann, A. J. Weaver, C. Yoshikawa, and N. Zeng

Abstract

Eleven coupled climate–carbon cycle models used a common protocol to study the coupling between climate change and the carbon cycle. The models were forced by historical emissions and the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 anthropogenic emissions of CO2 for the 1850–2100 time period. For each model, two simulations were performed in order to isolate the impact of climate change on the land and ocean carbon cycle, and therefore the climate feedback on the atmospheric CO2 concentration growth rate. There was unanimous agreement among the models that future climate change will reduce the efficiency of the earth system to absorb the anthropogenic carbon perturbation. A larger fraction of anthropogenic CO2 will stay airborne if climate change is accounted for. By the end of the twenty-first century, this additional CO2 varied between 20 and 200 ppm for the two extreme models, the majority of the models lying between 50 and 100 ppm. The higher CO2 levels led to an additional climate warming ranging between 0.1° and 1.5°C.

All models simulated a negative sensitivity for both the land and the ocean carbon cycle to future climate. However, there was still a large uncertainty on the magnitude of these sensitivities. Eight models attributed most of the changes to the land, while three attributed it to the ocean. Also, a majority of the models located the reduction of land carbon uptake in the Tropics. However, the attribution of the land sensitivity to changes in net primary productivity versus changes in respiration is still subject to debate; no consensus emerged among the models.

Full access
J. Ching, G. Mills, B. Bechtel, L. See, J. Feddema, X. Wang, C. Ren, O. Brousse, A. Martilli, M. Neophytou, P. Mouzourides, I. Stewart, A. Hanna, E. Ng, M. Foley, P. Alexander, D. Aliaga, D. Niyogi, A. Shreevastava, P. Bhalachandran, V. Masson, J. Hidalgo, J. Fung, M. Andrade, A. Baklanov, W. Dai, G. Milcinski, M. Demuzere, N. Brunsell, M. Pesaresi, S. Miao, Q. Mu, F. Chen, and N. Theeuwes

Abstract

The World Urban Database and Access Portal Tools (WUDAPT) is an international community-based initiative to acquire and disseminate climate relevant data on the physical geographies of cities for modeling and analysis purposes. The current lacuna of globally consistent information on cities is a major impediment to urban climate science toward informing and developing climate mitigation and adaptation strategies at urban scales. WUDAPT consists of a database and a portal system; its database is structured into a hierarchy representing different levels of detail, and the data are acquired using innovative protocols that utilize crowdsourcing approaches, Geowiki tools, freely accessible data, and building typology archetypes. The base level of information (L0) consists of local climate zone (LCZ) maps of cities; each LCZ category is associated with a range of values for model-relevant surface descriptors (roughness, impervious surface cover, roof area, building heights, etc.). Levels 1 (L1) and 2 (L2) will provide specific intra-urban values for other relevant descriptors at greater precision, such as data morphological forms, material composition data, and energy usage. This article describes the status of the WUDAPT project and demonstrates its potential value using observations and models. As a community-based project, other researchers are encouraged to participate to help create a global urban database of value to urban climate scientists.

Open access
Maurice Blackmon, Byron Boville, Frank Bryan, Robert Dickinson, Peter Gent, Jeffrey Kiehl, Richard Moritz, David Randall, Jagadish Shukla, Susan Solomon, Gordon Bonan, Scott Doney, Inez Fung, James Hack, Elizabeth Hunke, James Hurrell, John Kutzbach, Jerry Meehl, Bette Otto-Bliesner, R. Saravanan, Edwin K. Schneider, Lisa Sloan, Michael Spall, Karl Taylor, Joseph Tribbia, and Warren Washington

The Community Climate System Model (CCSM) has been created to represent the principal components of the climate system and their interactions. Development and applications of the model are carried out by the U.S. climate research community, thus taking advantage of both wide intellectual participation and computing capabilities beyond those available to most individual U.S. institutions. This article outlines the history of the CCSM, its current capabilities, and plans for its future development and applications, with the goal of providing a summary useful to present and future users.

The initial version of the CCSM included atmosphere and ocean general circulation models, a land surface model that was grafted onto the atmosphere model, a sea-ice model, and a “flux coupler” that facilitates information exchanges among the component models with their differing grids. This version of the model produced a successful 300-yr simulation of the current climate without artificial flux adjustments. The model was then used to perform a coupled simulation in which the atmospheric CO2 concentration increased by 1 % per year.

In this version of the coupled model, the ocean salinity and deep-ocean temperature slowly drifted away from observed values. A subsequent correction to the roughness length used for sea ice significantly reduced these errors. An updated version of the CCSM was used to perform three simulations of the twentieth century's climate, and several projections of the climate of the twenty-first century.

The CCSM's simulation of the tropical ocean circulation has been significantly improved by reducing the background vertical diffusivity and incorporating an anisotropic horizontal viscosity tensor. The meridional resolution of the ocean model was also refined near the equator. These changes have resulted in a greatly improved simulation of both the Pacific equatorial undercurrent and the surface countercurrents. The interannual variability of the sea surface temperature in the central and eastern tropical Pacific is also more realistic in simulations with the updated model.

Scientific challenges to be addressed with future versions of the CCSM include realistic simulation of the whole atmosphere, including the middle and upper atmosphere, as well as the troposphere; simulation of changes in the chemical composition of the atmosphere through the incorporation of an integrated chemistry model; inclusion of global, prognostic biogeochemical components for land, ocean, and atmosphere; simulations of past climates, including times of extensive continental glaciation as well as times with little or no ice; studies of natural climate variability on seasonal-to-centennial timescales; and investigations of anthropogenic climate change. In order to make such studies possible, work is under way to improve all components of the model. Plans call for a new version of the CCSM to be released in 2002. Planned studies with the CCSM will require much more computer power than is currently available.

Full access